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Abstract

Quantum mechanics continues to intrigue us with bizarre predictions that seemingly run counter to

our everyday classical intuition. Superposition, zero-point motion, entanglement, and inescapable

bounds on measurement precision are just a few purely quantum mechanical effects that come to

mind. The promise of observing such effects in mesoscale mechanical resonators some orders of

magnitude larger than the systems these effects had once been confined to, has resulted in surging

interest in the field of cavity electro- and optomechanics. In these systems, the strong interaction of

light and matter allows radiation pressure forces to provide significant damping to the mechanical

motion, and serves as a means to mitigate the quantum-destroying, decohering effects of the pervasive

thermal bath. However, for this backaction cooling to reduce the phonon occupation of a mechanical

mode below unity, the confluence of the device and experimental setup must conform to a very strict

set of conditions characterized by high optical and mechanical cavity quality factors, low optical

absorption, low drive noise, and sufficiently sensitive detection.

In this work, we describe the first optomechanical device and all-optical experimental setup to

simultaneously satisfy these conditions, realizing the quantum ground state cooling of a 3.7 GHz

mechanical mode (final phonon occupation n̄ = 0.85 ± 0.08) in a picogram and micron-scale pat-

terned nanobeam structure from a bath temperature of approximately 20 K. In context, subunity

occupation of a mechanical mode in a similar-sized object had previously only been achieved by elec-

tromechanical devices operating in millikelvin dilution refrigerator environments. We also discuss

the numerical simulation efforts involved in designing and optimizing these novel, coupled optical

and mechanical resonators, and the fabrication procedure to realize them in silicon microchips. We

recognize that this cooling result represents only an initial step toward the complete optical control

of mesoscale mechanical oscillators in the quantum regime. To this end, we summarize an experi-

ment we performed to detect the quantum zero-point motion of a nanobeam via scattering sideband

asymmetry. We further show work in improving the optomechanical coupling and quality factors of

these devices, as well as devising more efficient coupling schemes to improve measurement sensitivity.



vi

Contents

Acknowledgments iv

Abstract v

List of Figures x

List of Tables xii

1 Background 1

1.1 Previous Work within the Painter Group . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Backaction Cooling Theory 8

2.1 Semiclassical Derivations of Observed Spectra . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Sideband-Resolved, Large Detuning Limit . . . . . . . . . . . . . . . . . . . . 12

2.1.2 Modified Result for a Weak Detuned Probe . . . . . . . . . . . . . . . . . . . 14

2.2 Quantum Mechanical Derivations of Dynamics . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Sideband-Resolved, Mechanical Frequency Detuned Limit . . . . . . . . . . . 18

3 Optomechanical Device Design 21

3.1 Crystal Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.1 Plane Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.2 Translational Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.3 Bandgaps and Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.4 Phononic Bloch States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Index Guiding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Optomechanical Coupling Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.1 Moving Dielectric Boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.2 Photoelastic Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Designing Nanobeams with Numerical Simulations . . . . . . . . . . . . . . . . . . . 33

3.4.1 Unit Cell Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33



vii

3.4.2 Cavity Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4.3 Mechanical Quality Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5 Nanobeam Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Fabrication 44

4.1 Lab Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Lithography Adjustments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Silicon Surface Passivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 Ground State Cooling 49

5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2 EIT Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.3 Mechanical Mode Thermometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3.1 Calibration of Input Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3.2 Calibration of EDFA Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3.3 Calibration of Electronic Gain . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.3.4 Optical Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.3.5 Mechanical Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3.6 Optomechanical Coupling Rate Characterization . . . . . . . . . . . . . . . . 56

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.4.1 Bath Temperature Characterization . . . . . . . . . . . . . . . . . . . . . . . 57

5.4.2 Device Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.4.3 Backaction Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.4.4 Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.5 Modifications to Intrinsic Mechanical Damping . . . . . . . . . . . . . . . . . . . . . 61

5.5.1 Temperature Dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.5.2 Intracavity Photon Number Dependence . . . . . . . . . . . . . . . . . . . . . 63

5.5.3 Combined Loss Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.6 Noise Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.6.1 Phase Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.6.2 Amplifier Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.7 Measurement Imprecision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.8 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6 Other Experiments 78

6.1 Further Device Improvements (5GHF Design) . . . . . . . . . . . . . . . . . . . . . . 78

6.1.1 Device Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78



viii

6.1.2 Backaction Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.2 Free Space Couplers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.2.1 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.2.2 Fabrication and Preliminary Results . . . . . . . . . . . . . . . . . . . . . . . 83

6.3 Motional Sideband Asymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.3.1 Observing Zero-Point Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

A Mathematical Definitions 87

A.1 Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

A.2 Delta Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

A.3 Spectral Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

A.4 Commutation Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

A.5 Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

A.6 Trigonometric Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

A.7 Lorentzian Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

A.8 Contracted Index Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

B Quantum Input–Output Theory 91

B.1 Quantum Langevin Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

B.2 Input–Output Operator Correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

B.3 Single Mode Cavity Coupled to a Thermal Bath . . . . . . . . . . . . . . . . . . . . 96

C Rotated Photoelastic Tensor 97

D Experimental Setup Details 98

D.1 Equipment Listing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

D.2 JDSU Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

D.3 Electro-optic Amplitude Modulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

D.4 Laser Frequency Stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

D.4.1 Lock-in Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

D.4.2 Network Analyzer Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

D.5 Continuous Flow Liquid Helium Cryostat . . . . . . . . . . . . . . . . . . . . . . . . 104

D.6 Dimpled Fiber Taper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

D.7 Instrument Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

E Silicon Material Properties 107



ix

F COMSOL 3.5a Functions 110

F.1 Geometry Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

F.2 Perturbation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

F.3 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

G Publications 116

Bibliography 117



x

List of Figures

1.1 Truncated level diagram for an optomechanical system . . . . . . . . . . . . . . . . . . 2

1.2 “Zipper” double nanobeam cavities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Optomechanical nanobeam cavities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Fabry-Perot cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 Bandgaps in a 1D periodic dielectric . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Index guiding in an infinite slab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Moving dielectric boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Nanobeam unit cell band diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 Well function shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.6 Nelder-Mead simplex search path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.7 Thermoelastic damping simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.8 Temperature dependence of mechanical losses . . . . . . . . . . . . . . . . . . . . . . . 40

3.9 Modeling the phononic shield and clamping losses . . . . . . . . . . . . . . . . . . . . 41

3.10 FEM simulations of the 5G design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1 Silicon-on-insulator device fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Scanning electron microscope image of a 5G device . . . . . . . . . . . . . . . . . . . . 46

4.3 Lithography parameter adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1 Detailed experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2 Mechanical mode thermometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.3 Device characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.4 EIT and optomechanical damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.5 Optical cooling results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.6 Thermo-optic effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.7 Temperature-dependent loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.8 Photon number–dependent loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.9 Loss due to free carriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65



xi

5.10 Phase noise–modified output spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.11 Experiment phase noise analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.12 Comparison of cooling spectra with and without phase noise . . . . . . . . . . . . . . 72

5.13 Effect of amplifier noise and optical losses on the measured signal . . . . . . . . . . . 74

6.1 FEM simulations of the 5GHF design . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2 5GHF device characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.3 5GHF backaction cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.4 Numerical simulations of a free-space coupler . . . . . . . . . . . . . . . . . . . . . . . 82

6.5 SEM image of a free-space coupler and related designs . . . . . . . . . . . . . . . . . . 83

6.6 Optical characterization of a free-space coupler . . . . . . . . . . . . . . . . . . . . . . 84

6.7 Measuring zero-point motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

D.1 JDSU switch controller PCB schematic . . . . . . . . . . . . . . . . . . . . . . . . . . 99

D.2 Electro-optic amplitude modulator model . . . . . . . . . . . . . . . . . . . . . . . . . 100

D.3 Cavity reflection signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

D.4 Simplified experimental setup with VNA . . . . . . . . . . . . . . . . . . . . . . . . . 102

D.5 Example VNA signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

D.6 Schematic of cryostat stage stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

D.7 Cryostat pictures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

D.8 Taper coupling in the cryostat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106



xii

List of Tables

1.1 Radiation pressure cooling results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.1 Photoelastic coefficients for silicon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Summary of device designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1 Summary of surface treatments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

D.1 Detailed equipment listing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

D.2 JDSU switch controller parts list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

E.1 Temperature-dependent refractive index . . . . . . . . . . . . . . . . . . . . . . . . . . 107

E.2 Temperature-dependent thermo-optic coefficient . . . . . . . . . . . . . . . . . . . . . 107
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Chapter 1

Background

That light can exert a force—radiation pressure—is an idea typically thought to originate from

Kepler in the 17th century as a natural consequence of the (ironically incorrect) corpuscular theory

of light, and was supported by Newton as an explanation for the relative tilt of comet tails [1].

Later, Euler showed the existence of a repulsive force in the context of the longitudinal wave theory

of light (credited to Huygens). Attempts to measure the strength of this force in the 18th century

however, proved inconclusive [2]. The development of the unified theory of classical electromagnetism

provided the correct basis for Maxwell to predict the existence of radiation pressure in 1873 [3], but

the experimental proof by Crooke and his radiometer in the same year was later shown to be

flawed and instead due to molecular scattering [4, 5]. Proper experimental verification for radiation

pressure finally came in 1901, by Lebedev using a carefully calibrated torsion balance [6], with

independent verification by Nichols and Hull in 1903 [7, 8]. With the rise of quantum mechanics

in the 20th century, Saha published one of the first papers suggesting the quantization of light

momentum in relation to radiation pressure [9], and was vindicated in 1923 by Compton’s scattering

experiments [10]. Circa 1970, Braginsky et al. noticed the increasing sensitivity of measurements

made by coupled optical and mechanical (optomechanical) cavities. In a series of pioneering papers,

he explored the radiation pressure effects of light confined to such optomechanical cavities, imposing

limits to measurement sensitivity due to the quantization of light [11] and predicting that the finite

cavity decay time would give rise to so-called dynamic backaction effects, leading to the amplification

or damping of the mechanical oscillations [12]. This sparked a flurry of papers discussing radiation

pressure forces in optomechanical cavities, such as its role as a quantum noise source in gravitational

wave detection interferometers [13, 14], and experimental proposals for state squeezing [15, 16],

quantum number nondemolition measurements [17, 18], and the generation of nonclassical states

[19].

By the late 1990s, two forms of radiation pressure damping had been proposed as viable methods

for bringing massive objects into the quantum regime: an active, feedback cooling scheme [20]

operating on the principle of utilizing sensitive position measurements of the oscillator to effect
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Figure 1.1: Truncated level diagram for an optomechanical system. a, Optical frequency
response of the cavity, with the red-detuned pump beam at ω` = ωo − ωm schematically shown as
a green arrow, with mechanics induced scattering sidebands at ω` ± ωm. The ω` + ωm sideband is
resonantly enhanced by the optical cavity. b, The corresponding energy level diagram for a. The
kets, |n, `〉, represent a combined mechanical/optical state with m phonons and ` photons. The pump
beam at ω` = ωo − ωm drives a transition to the set of optical excited states, heavily favoring the
|n−1, 1〉 state which decays to |n−1, 0〉 by the emission of a photon with energy ~ωo (corresponding
to the ω` + ωm = ωo sideband in a), with the net effect of reducing the mechanical occupation by
one. The converse, a net increase in mechanical occupation, is exceedingly unlikely.

real-time modifications of the oscillator motion, and a passive, “self” cooling scheme utilizing a

red-detuned drive as originally proposed by Braginsky et al. In the latter, the radiation pressure

force is enhanced by coupling the motion of a mechanical object to the light field in an optical

cavity. Pumping of the optical cavity by a single-frequency electromagnetic source produces a

coupling between the mechanical motion and the intensity of the electromagnetic field built up in

the resonator. As the radiation pressure force exerted on the mechanical object is proportional to the

field intensity in the resonator, a form of dynamical backaction results, which for a lower frequency

(red) detuning of the laser from the cavity, leads to damping and cooling of the mechanical motion.

This is easily understood with the energy level diagram in Figure 1.1, and is very similar to the

successful technique used in atom and ion cooling [21]. Both schemes showed promise as a means

to achieve quantum ground state cooling in optomechanical systems, defined as the reduction of the

average mechanical mode occupation below unity, representing a ground state occupation probability

of >50%.

The active scheme was demonstrated experimentally in 1999, showing a factor of 40 reduction in

the effective temperature of a gram-scale Fabry-Perot cavity end mirror [22]. The passive scheme,

the focus of this work, was demonstrated nearly simultaneously in 2006 by three different groups.

From room temperature, both Arcizet et al. and Gigan et al. showed “self” cooling to an effective

temperature of ∼10 K in a silicon micromirror [23, 24]. On the other hand, Schliesser et al. used

instead a toroid cavity at room temperature and showed similar cooling to an effective temperature

of 11 K [25], but with an average phonon occupation two orders of magnitude lower as a result of

the higher mechanical mode frequency (∼60 MHz compared to <1 MHz).

The variety of physical realizations for optomechanical cavities can already be seen from these
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early radiation pressure cooling experiments. Indeed, optomechanical cavities span the length–mass

spectrum, from the kilometer–kilogram scale gravitational wave detector at LIGO [26] to diminutive

nanometer–femtogram scale nanowire cavities [27]. However, despite their differences, they can be

characterized using an identical set of rate parameters (expressed in angular units; to be explored

in greater detail in the following chapter):

� ωo and ωm, respectively the optical and mechanical cavity resonance frequencies.

� κ, the total loss rate of the optical cavity (with related optical quality factor, Qo ≡ κ/ωo).

� γi, the intrinsic loss rate of the mechanical cavity (with related intrinsic mechanical quality

factor, Qm ≡ γi/ωm), crucially representing the coupling rate to the thermal bath.

� g, the coupling rate between the optics and the mechanics (optomechanical coupling rate),

physically representing the change in the optical cavity mode frequency resulting from the

zero-point motion of the mechanical system. The amplitude of the zero-point motion is given

by xzpf =
√
~/2meffωm, where ~ = 1.054571726(47)×10−34 J · s is the reduced Planck constant

[28] and meff is the effective motional mass of the mechanical resonator.

A significant amount of effort has been devoted to understanding the limits of the radiation pressure

cooling schemes and the requirements for achieving quantum ground state cooling in relation to

these rate parameters [29–33]. Most notably, the use of backaction (passive) cooling with the goal

of reducing the mechanical mode occupation below the unity threshold requires operation in the so-

called sideband-resolved regime, characterized by an optical loss rate much lower then the mechanical

frequency of the system (κ/4ωm < 1). In the converse, sideband unresolved regime (κ/4ωm > 1), the

rate of the off-resonance transition (red arrow in Figure 1.1) is sufficient to induce significant mode

heating, rendering the quantum ground state of the mechanical mode beyond reach [29, 31, 32].

This is again very similar to atom and ion cooling [21, 34].

In the last several years, numerous experiments attempting to reach the quantum ground state

via these radiation pressure cooling schemes have been performed, with their results summarized in

Table 1.1. However, the first demonstration of a mesoscopic resonator in its ground state did not use

radiation pressure cooling at all, but instead direct environmental cooling of a 6 GHz mechanical

mode to millikelvin temperatures, resulting in a phonon occupation below 0.07 [48]. This was

followed by the radiation pressure cooling of an electromechanical system to a phonon occupation of

0.34±0.05 [51]. Within the optomechanics community however, the closest approach to the quantum

regime in the mesoscale was a phonon occupation of 9±1 in a microtoroid cavity [50]. In this work, we

demonstrate the first all-optical quantum ground state cooling of a mechanical mode in a nanobeam-

based optomechanical crystal, with a lowest achieved phonon occupation of 0.85 ± 0.08 [52]. This

allows well-developed quantum optics techniques to be applied to manipulating the behavior of a
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Tb [K] ωm/2π Qm n̄f Ref.
Cohadon et al. (1999) 300 1.86 MHz 40,000 8.2× 105 [22]
Arcizet et al. (2006) 300 814 kHz 10,000 2.6× 105 [23]
Gigan et al. (2006) 300 278 kHz 10,000 6× 105 [24]
Schliesser et al. (2006) 300 57.8 MHz 2,890 4.0× 103 [25]
Naik et al. (2006) 0.003 21.8 MHz 120,000 25 [35]
Kleckner and Bouwmeester (2006) 300 12.5 kHz 137,000 2.3× 105 [36]
Corbitt et al. (2007) 300 2.2 kHz 3,200 8× 106 [37]
Poggio et al. (2007) 2.2 2.6 kHz − 2.3× 104 [38]
Brown et al. (2007) 300 7 kHz 20,000 1.3× 108 [39]
Gröblacher et al. (2008) 35 557 kHz 1,000 1× 104 [40]
Schliesser et al. (2008) 300 73.5 MHz 30,000 5.2× 103 [41]
Thompson et al. (2008) 300 134 kHz 1,100,000 1.1× 103 [42]
Vinante et al. (2008) 4.2 914 Hz 880,000 4× 103 [43]
Teufel et al. (2008) 0.05 1.5 MHz 300,000 140 [44]
Gröblacher et al. (2009) 5 945 kHz 30,000 32± 4 [45]
Schliesser et al. (2009) 1.65 65.3 MHz 2,600 63± 20 [46]
Park and Wang (2009) 1.4 99.2 MHz 3,700 37 [47]
O’Connell et al. (2010) 0.025 6.2 GHz 260 <0.07 [48]
Rocheleau et al. (2010) 0.146 6.3 MHz 1,000,000 3.8± 1.3 [49]
Riviére et al. (2011) 0.6 70 MHz 10,000 9± 1 [50]
Teufel et al. (2011) 0.015 10.6 MHz 330,000 0.34± 0.05 [51]
Chan et al. (2011) 20 3.7 GHz 105,000 0.85± 0.08 [52]
Verhagen et al. (2011) 0.65 78 MHz 22,000 1.7± 0.1 [53]

Table 1.1: Radiation pressure cooling results. Listed in chronological year order are the min-
imum achieved mechanical mode occupations, n̄f , in radiation pressure cooling experiments, along
with the thermal bath temperature, Tb, mechanical mode frequency, ωm, and the mechanical quality
factor, Qm. The results of this work are included and highlighted. While technically the work by
O’Connell et al. did not utilize radiation pressure cooling, it is included for comparison.

picogram, micron-scale mechanical element quietly oscillating in its ground state, bringing about

the long sought after transition from cavity optomechanics, to cavity quantum optomechanics.

For the interested reader, a more detailed overview of the development of quantum cavity op-

tomechanics can be found in the excellent review papers [32, 54, 55].

1.1 Previous Work within the Painter Group

Before beginning the backaction cooling experiment, I worked extensively with Matt Eichenfield

developing my numerical simulation knowledge and script library by helping design and optimize

“zipper” double nanobeam cavities [56, 57]. This describes a pair of silicon nitride, doubly clamped,

patterned nanobeam, linear optical cavities placed in the near field of each other, forming a su-

percavity sensitive to the differential motion of the beams (see Figure 1.2). The sensitivity scales

exponentially with reducing slot gap between the nanobeams; the high contrast nitride–air–nitride

interface in the gap significantly enhances the field intensity in the low-index region, resulting in

large field gradients and drastically reduced mode volumes. On this platform we measured an
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2 µm

a

b c

d e
0 1

Figure 1.2: “Zipper” double nanobeam cavities. a, False-color scanning electron microscope
(SEM) image of a fabricated zipper cavity with the transverse (to the long axis of the beam) electric
field of the fundamental bonded optical mode superimposed (computed using finite element analysis,
abbreviated FEM). The narrow slot between the two beams results in a large field concentration in
the gap, leading to substantial field gradients and enhanced sensitivity to the motion of the beams.
Below, FEM simulations of the fundamental double beam mechanical modes, represented by the
normalized displacement field magnitude, |Q|/max{|Q|}: b, the out-of-plane common mode, c, the
out-of-plane differential mode, d, the in-plane common mode, and e, the in-plane differential mode
(which we are most sensitive to as it directly modulated the slot gap).



6

optomechanical coupling rate (with respect to the slot gap) between the 8 MHz fundamental dif-

ferential beam mode and the fundamental bonded optical mode of ∼600 kHz, with a corresponding

photodetector-noise-limited displacement sensitivity of 5× 10−17 m ·Hz−1/2. At high input powers

(∼5 mW), we further observed a large optical stiffening effect, increasing the frequency of the me-

chanical mode to 19 MHz, representing a five-fold increase in the intrinsic mechanical stiffness of

the beam. Double nanobeam designs have since been further refined for sensitive, large bandwidth

force detection [58].

Following this, we began work on single silicon nanobeam optomechanical crystals [59, 60] (la-

beled G2 nanobeams for clarity; see Figure 1.3). These G2 nanobeams would eventually serve as

the basis for the 5G and 5GHF nanobeam designs used in this work for quantum ground state cool-

ing. Conceptually, optomechanical crystals originated in epitaxially grown vertical cavity structures

[61], and utilize the principle of Bragg confinement for the simultaneous localization of the optical

and mechanical mode to a small, optical wavelength scale volume, leading to enhanced light–matter

interaction. Crucially for the prospects of quantum ground state cooling using the nanobeam op-

tomechanical crystal platform, the realized frequencies of the optically coupled mechanical modes in

G2 devices reached an upper limit of >2 GHz, entering the all-important sideband-resolved regime

of operation (κ/4ωm ≈ 0.6 for a fundamental optical mode with a quality factor of 38,000 coupled

to a fundamental mechanical breathing mode at 2.2 GHz). In addition to spurring the development

of the 5G and 5GHF devices, working on the G2 nanobeams further developed my numerical simu-

lation knowledge to include phononic crystal design, and facilitated a gradual introduction to silicon

fabrication, and optical and mechanical mode characterization.

Meanwhile, Safavi-Naeini et al. theorized and demonstrated a means to mitigate clamping losses

in high-frequency mechanical modes of planar silicon structures, yielding improved mechanical qual-

ity factors [62, 63]. This concept, in conjunction with the device design knowledge from the double

and single nanobeam experiments described above, produced large gains in the frequency–quality

product (fm ·Qm) of the devices in this work; to >1014 in the 5G design and to >1015 in the 5GHF

design.

Thus, my experiences, along with the availability of powerful numerical simulation tools [64, 65],

the group’s wealth of silicon fabrication experience [66, 67], and the ability to rapidly couple to,

and characterize hundreds of devices via a dimpled fiber taper probe [68–70], provided a uniquely

appropriate starting point for approaching the problem of quantum ground state cooling in cavity

optomechanics.
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Figure 1.3: Optomechanical nanobeam cavities. a, SEM image of a fabricated optomechanical
crystal cavity. The measured b, optical transmission response and f, power spectral density (PSD)
of the mechanical fluctuations imprinted onto the optical signal (using a simplified version of the
experimental setup in Figure 5.1). To the right are FEM simulations of the c, fundamental, d, 2nd
order, and e, 3rd order optical modes (plotted as normalized transverse electric field amplitude), and
the g, fundamental “pinch” mode, h, fundamental “accordion” mode, and i, fundamental breathing
mode (plotted as normalized displacement field magnitude). Crucially, the ability to transduce
high-frequency mechanical motion allows operation in the sideband-resolved regime of backaction
cooling.
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Chapter 2

Backaction Cooling Theory

An optomechanical system is canonically modeled as a Fabry-Perot cavity of length Leff with one

mirror fixed and the other mirror of mass meff mounted on a spring (Figure 2.1). We examine the

dynamics of an optical cavity mode at frequency ωo, coupled to the position of the mass-spring

system oscillating at frequency ωm. Modeling both modes as quantum simple harmonic oscillators

with â (â†) and b̂ (b̂†) respectively the annihilation (creation) operators of photons and phonons,

the system Hamiltonian is simply

Ĥsys = ~ωoâ†â+ ~ωmb̂†b̂. (2.1)

The position operator of the mechanical quantum harmonic oscillator is

x̂ = xzpf(b̂
† + b̂), (2.2)

where xzpf =
√
〈0|x̂2|0〉 =

√
~/2meffωm is the zero-point fluctuation. A change in the position of the

end mirror modifies the cavity length, shifting the optical cavity mode frequency by ∆ωo = ωox̂/Leff.

We can generalize this to

∆ωo =
∂ωo
∂x

x̂, (2.3)

so the interaction Hamiltonian is

Ĥint = ~
∂ωo
∂x

xzpf(b̂
† + b̂)â†â (2.4)

= ~g(b̂† + b̂)â†â, (2.5)

where

g = xzpf
∂ωo
∂x

(2.6)
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ωm, b̂†, b̂ωo, â
†, â

Leff

meff

x̂

Figure 2.1: Fabry-Perot cavity. The canonical optomechanical system, a Fabry-Perot cavity of
length Leff with one mirror fixed and the other mounted on a spring with mass meff. The intracavity
optical field is described by a cavity mode frequency, ωo, with associated photon creation/annihi-
lation operators, â† and â. The mechanical oscillator is described by a resonant frequency, ωm,
with associated phonon creation/annihilation operators, b̂† and b̂. When the mirror moves by x̂, the
optical resonance condition changes to ωo + δωo = ωo(1 + x̂/Leff), resulting in an increased optical
cavity energy of ~ωo(1 + x̂/Leff)â†â.

is the optomechanical coupling rate giving the optical frequency shift imparted by the zero-point

motion of the mechanical system. The total Hamiltonian is thus

Ĥ = ~ωoâ†â+ ~ωmb̂†b̂+ ~g(b̂† + b̂)â†â. (2.7)

To move to an interaction picture rotating at a coherent drive frequency ω`, we apply the unitary

transformation Û = eiω`â
†ât so that the Hamiltonian is now

Ĥ → Û

(
Ĥ − i~ d

dt

)
Û† = ~ωoâ†â+ ~ωmb̂†b̂+ ~g(b̂† + b̂)â†â− ~ω`â†â

= ~∆â†â+ ~ωmb̂†b̂+ ~g(b̂† + b̂)â†â, (2.8)

having defined ∆ ≡ ωo − ω`.

The input–output formalism for a cavity mode coupled to a bath (outlined in Appendix B) allows

the equations of motion for the system to be written

˙̂a = −
(
i∆ +

κ

2

)
â− igâ(b̂† + b̂)−

√
κe
2
âin −

√
κ′âin,i, (2.9)

˙̂
b = −

(
iωm +

γi
2

)
b̂− igâ†â−√γib̂in. (2.10)

The total optical and intrinsic mechanical loss rates are given by κ and γi respectively, with the

latter giving the coupling to the thermal bath noise operator, b̂in. We have also explicitly separated

the coupling to the optical bath into detected (extrinsic) and undetected (intrinsic) channels, âin

and âin,i, with respective coupling rates κe/2 and κ′ = κ − κe/2. The factor of 1/2 models the

behavior of the evanescent taper coupling scheme where there is back-reflection from the cavity, but
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we only detect the transmitted signal (this is the scheme used for most of the systems in this work).

In the input–output framework, this is equivalent to a two-sided cavity with symmetric loss rates.

More correctly, we should write κ = κe/2 + κe/2 + κi, where κi is the true intrinsic loss rate of the

cavity, so the loss rate to the undetected channels in (2.9) can be expressed as κ′ = κe/2 + κi. We

make this distinction because now it is clear that in the taper coupling scheme, κ′ ≥ κ/2, and the

minimum loss rate to the undetected channel is κ′ = κ/2 = κe/2 where we have set κi = 0. At the

interaction boundary of the cavity mode and the bath, the bath noise operators satisfy

âout = âin +

√
κe
2
â, (2.11)

b̂out = b̂in +
√
γib̂, (2.12)

where experimentally, âout represents the transmitted optical field. Usually, we can write â as a

linear function of âin so in the frequency domain we can implicitly define the optical cavity response

function in transmission as âout(ω) = t(ω)â(ω) and the optical cavity response function in reflection

as r(ω) ≡ 1− t(ω).

The dynamics of the coupled optomechanical system described by (2.9) and (2.10) can be char-

acterized by several dimensionless parameters:

� Qo ≡ ωo/κ and Qm ≡ ωm/γi, respectively the optical and mechanical quality factor.

� κ/ωm, the sideband resolution parameter. We will see that this determines the minimum

phonon occupation.

� g/κ, the strong coupling parameter. This is a measure of the nonlinearity of the system in

that for g/κ > 1, a single phonon will induce a significant shift (>κ) in the optical resonance

frequency. Conversely, a single photon will strongly effect the momentum of the mirror. We

can understand this intuitively in a Fabry-Perot cavity by comparing the momentum that the

end mirror absorbs from a single photon introduced into the optical cavity to the zero-point

momentum of the end mirror. The former is given by (2~ωo/c) × (c/2Leff) × (1/κ), which is

the photon impulse multiplied by the rate of incidence on the end mirror multiplied by the

time spent in the cavity. The latter is given by
√
~meffωm/2. The ratio of the two is

~ωo/Leffκ√
~meffωm/2

= 2
ωo
Leff

xzpf

κ
≈ g

κ
, (2.13)

which for g/κ > 1 implies the aforementioned nonlinear behavior.

� ∆/κ, the detuning parameter.

The systems in this work typically have κ/ωm � 1 (the so-called good-cavity limit), g/κ� 1 (weak

coupling approximation), |∆/κ| � 1 (since we usually work at ∆ = ωm), and (Qo, Qm) � 1 (high
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quality factor cavities). A well-known method for solving the equations of motion is by linearizing

about the steady state photon and phonon amplitudes, α0 and β0 satisfying

α0 = −
√
κe/2

i(∆ + g(β∗0 + β0)) + κ/2
, (2.14)

β0 = − ig|α0|2

iωm + γi/2
, (2.15)

via the transformation â → α0 + â and b̂ → β0 + b̂, where now 〈â〉 = 〈b̂〉 = 0 and the total photon

number is given by |α0|2+〈â†â〉. Qualitatively, the weak coupling approximation ensures the validity

of the linear model (|â| � |α0|) by bounding the perturbations caused by vacuum fluctuations; we

do not want our dynamics to be significantly impacted by the vacuum field. The importance of the

other bounds will be seen in the classical and quantum mechanical derivation of dynamics.

We note that (2.14) is a third-order polynomial equation with solutions that exhibit bistability

for sufficiently strong input drive fields, with a stability criterion given by (for ∆ > 0) [71]

ωm

(
1 +

4∆2

κ2

)
− 4g2|α0|2

κ2
∆ > 0. (2.16)

While unstable solutions are a topic of interest, they are not the focus of this work. In the systems

under consideration here, the even stricter driven weak coupling assumption, G/κ � 1 is valid,

where we have introduced the cavity enhanced optomechanical coupling rate

G ≡ gα0 = g
√
nc, (2.17)

where nc is the intracavity photon number. As a consequence, we consider only stable solutions to

the steady state photon amplitude in the cavity, and we have ∆ + g(β∗0 + β0) ≈ ∆.

2.1 Semiclassical Derivations of Observed Spectra

We first treat the system classically by representing the photon amplitude as a Fourier decom-

position of sidebands and the phonon amplitude as the classical mechanical excitation amplitude.

Substituting the ansatz

â→ α =
∑
q

αqe
−iqωmt, (2.18)

b̂→ β = β0e
−iωmt (2.19)
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into (2.9), we get

−iωm
∑
q

qαqe
−iqωmt = −

(
i∆ +

κ

2

)∑
q

αqe
−iqωmt

− igβ0

∑
q

αq

(
e−i(q+1)ωmt + e−i(q−1)ωmt

)
−
√
κe
2
αin, (2.20)

where αin =
√
Pin/~ωo is the driving field amplitude, Pin is the input power at the cavity, and

the intrinsic noise operator is dropped in the classical limit. For now, we assume the mechanical

oscillations are coherent so that β0 is a simple complex number. For random oscillations however

(such as thermal Brownian motion), β0 will be a stochastic variable specified by a distribution.

This issue will be addressed at the end of the next subsection. We can compactly express (2.20) as

M ·α = αin where

Mpq =
(
i(∆− pωm) +

κ

2

)
δpq + igβ0 (δp,q+1 + δp,q−1) , (2.21)

αin,p = −
√
κe
2
αinδp0. (2.22)

By truncating and inverting the coupling matrix, M , we can determine the sideband amplitudes as

αq = (M−1)qpαin,p and therefore the steady state amplitude leaving the cavity to be

αout = αin +

√
κe
2

∑
q

αqe
−iqωmt (2.23)

from the boundary equation, (2.11). The total power measured on a photodetector will thus be

proportional to

|αout|2 = |αin|2 +
κe
2

∑
q

∑
p

αqα
∗
pe
−i(q−p)ωmt + 2Re

{
αin

√
κe
2

∑
q

αqe
iqωmt

}
. (2.24)

2.1.1 Sideband-Resolved, Large Detuning Limit

The equations presented above are exact and can be solved for any case. In the sideband-resolved

limit, κ/ωm � 1, the optomechanical phase modulation factor is proportional to g/ωm, so only the

first-order sidebands at ω = ω` ± ωm (q = ±1) are significant. In this limit, (2.20) becomes the

system of equations

0 = −
(
−i∆ +

κ

2

)
α0 − igβ0 (α+ + α−)−

√
κe
2
αin, (2.25)

∓iωmα± = −
(
−i∆ +

κ

2

)
α± − igβ0α0. (2.26)
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Applying the approximation α0 � α± to (2.25), (2.25), and (2.26) immediately gives

α0 = −
√
κe/2

i∆ + κ/2
αin, (2.27)

α± = − igβ0

i(∆∓ ωm) + κ/2
α0, (2.28)

where nc ≡ |α0|2 is the intracavity photon number and

t(∆) ≡ 1− α0

√
κe/2

= 1− κe/2

i∆ + κ/2
(2.29)

gives the response of the cavity in transmission at ωo − ω`. We also have |αin| � |α0

√
κe/2| �

|α±
√
κe/2|. Therefore, the photodetector signal in (2.24) is dominated by terms proportional to

|αin|2, |αin||α0|, |αin||α±|, and |α0|2, and can be written

|αout|2 = |αin|2 +
κe
2
|α0|2 + 2

√
κe
2
αinRe{α0}

+ 2

√
κe
2
αinRe

{
α−e

−iωmt + α+e
iωmt

}
+O(|α0||α±|)

≈ |αin|2
∣∣∣∣1− κe/2

i∆ + κ/2

∣∣∣∣2
+ cos(ωmt)

(
|A+| cos(φ+) + |A−| cos(φ−)

)
+ sin(ωmt)

(
|A+| sin(φ+)− |A−| sin(φ−)

)
, (2.30)

where A± ≡ 2αinα±
√
κe/2 = |A±|e−iφ± and we have used the trigonometric summation identities

(A.19) and (A.20). The first term in (2.30) is the DC cavity transmission spectrum with famil-

iar Lorentzian shape. The remaining two terms compose the oscillating power at the mechanical

frequency, with average oscillating power given by ~ωo
2 (A2

cos + A2
sin), where Acos = |A+| cos(φ+) +

|A−| cos(φ−) and Asin = |A+| sin(φ+)− |A−| sin(φ−).

For coherent mechanical oscillations where β0 is a simple complex number, we can write the

single sided power spectral density of the detected optical output power close to ωm (given by the

autocorrelation of P (ω) = ~ωo|αout|2) as

S̄P (ω,∆) ≈ ~2ω2
oκ

2
eg

2|β0|2|αin|4

2(∆2 + (κ/2)2)((|∆| − ωm)2 + (κ/2)2)
× 2πδ(ω − ωm), (2.31)

where we have applied the large detuning approximation, |∆/κ| � 1, so the |A−| (|A+|) term is

negligible for ∆/κ > 1 (−∆/κ > 1).

If we have instead a mechanical system undergoing random thermal oscillations, (2.31) is no
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longer valid since β0 is no longer a simple complex number, and is instead a random process rep-

resented by a distribution. The autocorrelation function will now contain products of the form

β∗0(t)β0(t′). Classically, the ensemble averages of these products can be calculated for a ther-

mal state from the Bose-Einstein distribution, given in the frequency domain by 〈β∗0(ω)β0(ω))〉 =

1/(e~ω/kBTb −1) where kB is the Boltzmann constant and Tb is the bath temperature. For ∆/κ > 1,

the measured sideband frequency (ω` + ωm) is blue of the pump frequency so from the quantum

theory we will be considering normal ordered operators (b̂†b̂). Thus, (2.31) can be made valid for

such oscillations in the ∆/κ > 1 regime by substituting |β0|2 → n̄, the number of phonons occupying

the mechanical mode, and replacing the Dirac delta functions δ(ω − ωm) with unit-area Lorentzian

functions. A more rigorous quantum mechanical derivation is given below.

2.1.2 Modified Result for a Weak Detuned Probe

Occasionally, we consider the case where in addition to a driving field αin at ω`, we have a weak

probe αin,± at ω`±∆p where we are interested in the cavity response. We have the modified ansatz

â→ α = α0 + α+e
−i∆pt + α−e

i∆pt, (2.32)

b̂→ β = β0 + β+e
−i∆pt + β−e

i∆pt, (2.33)

where it is assumed that in the sideband-resolved regime, the Fourier expansions can be truncated

to the first-order sidebands, and that |α0| � |α±| and |β0| � |β±|. Inserting these into (2.9) and

(2.10) yields the system of equations

∓i∆pα± = −
(
i∆′ +

κ

2

)
α± − igα0(β± + β∗∓)−

√
κe
2
αin,±, (2.34)

−i∆pβ+ = −
(
iωm +

γi
2

)
β+ − ig(α+α

∗
0 + α0α

∗
−), (2.35)

i∆pβ− = −
(
iωm +

γi
2

)
β− − ig(α∗+α0 + α∗0α−), (2.36)

where ∆′ = ∆+g(β∗0 +β0) ≈ ∆ is the drive detuning accounting for the steady state cavity frequency

shift and we have again dropped the noise terms in the classical limit. We make the large detuning

assumption that ∆/κ > 1 (the driving field is red of the optical cavity), allowing both α− and β− to

be neglected (so long as ∆p/γi � 1). With these approximations, (2.34) and (2.35) can be solved,

giving

β+ = − igα+α
∗
0

i(ωm −∆p) + γi/2
, (2.37)

α+ = −
√
κe/2

i(∆−∆p) + κ/2 + g2|α0|2
i(ωm−∆p)+γi/2

αin,+. (2.38)
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The transmission frequency response of the cavity at the probe frequency ω`+∆p for a fixed ∆/κ > 1

is simply

t+(∆p) = 1− κe/2

i(∆−∆p) + κ/2 + g2|α0|2
i(ωm−∆p)+γi/2

. (2.39)

We can arrive at a similar result for −∆/κ > 1, giving

t−(∆p) = 1− κe/2

i(∆ + ∆p) + κ/2 + g2|α0|2
i(ωm−∆p)−γi/2

. (2.40)

2.2 Quantum Mechanical Derivations of Dynamics

We now derive a fully quantum mechanical theory for the optomechanical cavity dynamics (with

credit to Amir Safavi-Naeini for the original derivation), beginning again with (2.9) and (2.10). We

linearize these equations about a steady state intracavity photon amplitude, α0, satisfying

α0 = −
√
κe/2

i∆ + κ/2
αin, (2.41)

by mapping â → α0 + â(t), where 〈â(t)〉 = 0. In the unrotated (lab) frame, the optical cavity

mode occupancy is now given by |α0|2 + 〈â†â〉, and we note that in the rotated frame, the steady

state occupancy is now the vacuum. Representing time-dependent operators with their Fourier

decomposition (A.1) and keeping only terms that are first-order in the fluctuating operators â(ω)

and b̂(ω) allows (2.9) and (2.10) to be rewritten in the frequency domain as

â(ω) =
−
√
κe/2âin(ω)−

√
κ′âin,i(ω)− iG(b̂(ω) + b̂†(ω))

i(∆− ω) + κ/2
, (2.42)

b̂(ω) =
−√γib̂in(ω)− iG(â(ω) + â†(ω))

i(ωm − ω) + γi/2
. (2.43)

From these expressions, we see that â(ω) is a function that is peaked at ∆ with a characteristic

linewidth of κ, while b̂(ω) is a function that is very sharply peaked at ωm with a characteristic

linewidth of γi. Thus, these functions both have negligible value for ω far away from ωm.

To produce an expression dependent only on the input fields, we substitute (2.42) into (2.43) to
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get

b̂(ω) =
−√γib̂in(ω)

i(ωm − ω) + γi/2

− iG

i(ωm − ω) + γi/2

(
−
√
κe/2âin(ω)−

√
κ′âin,i − iGb̂(ω)

i(∆− ω) + κ/2

)

− iG

i(ωm − ω) + γi/2

(
−
√
κe/2â

†
in(ω)−

√
κ′â†in,i + iGb̂(ω)

−i(∆ + ω) + κ/2

)

=
−√γib̂in(ω)

i(ωm − ω) + γi/2

+
iG

i(ωm − ω) + γi/2

(√
κe/2âin(ω) +

√
κ′âin,i

i(∆− ω) + κ/2
+

√
κe/2â

†
in(ω) +

√
κ′â†in,i

−i(∆ + ω) + κ/2

)

− |G|2

i(ωm − ω) + γi/2

(
1

i(∆− ω) + κ/2
− 1

−i(∆ + ω) + κ/2

)
b̂(ω), (2.44)

where (A.3) has been used to eliminate b̂†(ω) terms which are sharply peaked around −ωm. Defining

ω′m ≡ ωm + δωm (the optical spring shifted mechanical frequency) and γ ≡ γi + γOM (the optically

damped mechanical loss rate) where

δωm ≡ |G|2Im

{
1

i(∆− ωm) + κ/2
− 1

−i(∆ + ωm) + κ/2

}
, (2.45)

γOM ≡ 2|G|2Re

{
1

i(∆− ωm) + κ/2
− 1

−i(∆ + ωm) + κ/2

}
, (2.46)

(2.44) can be rearranged to write finally

b̂(ω) =
−√γib̂in(ω)

i(ω′m − ω) + γ/2

+
iG

i(ω′m − ω) + γ/2

(√
κe/2âin(ω) +

√
κ′âin,i

i(∆− ω) + κ/2
+

√
κe/2â

†
in(ω) +

√
κ′â†in,i

−i(∆ + ω) + κ/2

)
. (2.47)

We note that we have set ω = ωm in (2.45) and (2.46) since δωm(ω) and γOM(ω) both have a

characteristic linewidth of κ and are therefore approximately constant over the bandwidth of b̂(ω)

(assuming γi � κ, which is true in the systems presented here). In the driven weak coupling

approximation, we can further make the self-consistent assumption that δωm � (ωm, κ, γ) so that

ω′m ≈ ωm for the remainder of this derivation. From (2.46), we can define a cooperativity parameter

C ≡
∣∣∣∣γOM

γi

∣∣∣∣ . (2.48)

Assuming that the input optical field is quantum limited and there are no thermal excitations

(an excellent approximation since ~ωo � kBT for any temperature we operate at in this work) we
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have the correlations of the respective operators (as shown in Appendix B) given by

〈â†in(ω)âin(ω′)〉 = 0, (2.49)

〈âin(ω)â†in(ω′)〉 = δ(ω + ω′), (2.50)

〈â†in,i(ω)âin,i(ω
′)〉 = 0, (2.51)

〈âin,i(ω)â†in,i(ω
′)〉 = δ(ω + ω′), (2.52)

〈b̂†in(ω)b̂in(ω′)〉 = nbδ(ω + ω′), (2.53)

〈b̂in(ω)b̂†in(ω′)〉 = (nb + 1)δ(ω + ω′), (2.54)

where nb = 1/(e~ωm/kBT − 1) is the thermal bath phonon population at the mechanical frequency,

kB = 1.3806488(13)× 10−23 J ·K−1 is the Boltzmann constant [28], and T is the bath temperature.

With these correlations known and the expression (2.47), it is possible to compute the steady state

mechanical mode occupancy, n̄ ≡ 〈b̂†b̂〉. We have

〈b̂†(t)b̂(t)〉 =
1

2π

ˆ ∞
−∞

dω

ˆ ∞
−∞

dω′ 〈e−iωte−iω
′tb̂†(ω)b̂(ω′)〉

=
1

2π

ˆ ∞
−∞

dω Sbb(ω), (2.55)

where we recognize the integrand to be equivalent to the spectral density of b̂, given by

Sbb(ω) =

ˆ ∞
−∞

dω′ 〈b̂†(ω)b̂(ω′)〉

=
γinb

(ωm + ω)2 + (γ/2)2
+

|G|2

(ωm + ω)2 + (γ/2)2

κe/2 + κ′

(∆− ω)2 + (κ/2)2

=
γ

(ωm + ω)2 + (γ/2)2

(
γinb
γ

+
|G|2κ
γ

1

(∆− ω)2 + (κ/2)2

)
. (2.56)

Integrating this spectrum yields the detuning dependent cavity phonon population,

n̄(∆) =
γinb
γ

+
|G|2κ
γ

1

(∆ + ωm)2 + (κ/2)2
, (2.57)

where we have assumed the bracketed term in (2.56) is approximately constant over the bandwidth

of the expression and substituted ω = −ωm.
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2.2.1 Sideband-Resolved, Mechanical Frequency Detuned Limit

In the sideband-resolved regime, κ/ωm � 1, we can evaluate (2.57) for different detunings, yielding

n̄ ≈



γinb
γ

+
|G|2κ
4γω2

m

≈ γinb
γ

+
γOM

γ

(
κ

4ωm

)2

, if ∆ = ωm (cooling),

γinb
γ

+
|G|2κ
γ

1

ω2
m + (κ/2)2

, if ∆ = 0 (on resonance),

γinb
γ

+
4|G|2

γκ
≈ γinb

γ
− γOM

γ
, if ∆ = −ωm (amplification),

(2.58)

where γOM ≈ ±4|G|2/κ for ∆ = ±ωm. The ∆ = ωm case exhibits the quantum limit on minimum

achievable phonon number given by n̄min = (κ/4ωm)2 as derived by [29, 31, 72]. This residual heating

effect arises from anti-Stokes scattering to the nonresonant ω` − ωm sideband and is suppressed by

the sideband resolution factor. We see then the importance of κ/4ωm < 1 (κ/4ωm � 1 ideally) in

attempting to cool the phonon occupation of the mechanical mode below unity.

To get an expression for â(ω) in terms of only the input bath operators in the large detuning

limit |∆/κ| � 1, we substitute, (2.47) into (2.42) to get

â(ω) =

√
κe/2âin(ω) +

√
κ′âin,i(ω)

i(∆− ω) + κ/2

(
± |G|2

i(∆− ω) + κ/2

1

i(ωm ∓ ω) + γ/2
− 1

)
+

√
κe/2â

†
in(ω) +

√
κ′â†in,i(ω)

i(∆− ω) + κ/2

(
± |G|2

−i(∆ + ω) + κ/2

1

±i(ωm ∓ ω) + γ/2

)
+

i
√
γiGb̂in,±(ω)

i(∆− ω) + κ/2

(
1

±i(ωm ∓ ω) + γ/2

)
, (2.59)

for ±∆/κ > 1, where

b̂in,±(ω) =

b̂(ω), if ∆/κ > 1 (red side driving),

b̂†(ω), if −∆/κ > 1 (blue side driving).
(2.60)

Using the boundary equation âout = âin +
√
κe/2â and (2.59), we can write the output field in
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the form

âout(ω) =

(
1− κe/2

i(∆− ω) + κ/2
± κe/2

(i(∆− ω) + κ/2)2

|G|2

±i(ωm ∓ ω) + γ/2

)
âin(ω)

+

(
−

√
κeκ′/2

i(∆− ω) + κ/2
±

√
κeκ′/2

(i(∆− ω) + κ/2)2

|G|2

±i(ωm ∓ ω) + γ/2

)
âin,i(ω)

+

(
i
√
κeγi/2

i(∆− ω) + κ/2

G

±i(ωm ∓ ω) + γ/2

)
b̂in,±(ω)

+

(
± κe/2

(i(∆− ω) + κ/2)(−i(∆ + ω) + κ/2)

|G|2

±i(ωm ∓ ω) + γ/2

)
â†in(ω)

+

(
±

√
κeκ′/2

(i(∆− ω) + κ/2)(−i(∆ + ω) + κ/2)

|G|2

±i(ωm ∓ ω) + γ/2

)
â†in,i(ω)

= t±(ω)âin + η±(ω)âin,i + s12,±(ω)b̂in,±, (2.61)

where in the last line, we have dropped the conjugate terms in the resolved sideband approximation,

κ/ωm � 1, and we label the remaining bath operator coefficients with scattering matrix terminology

as outlined in [73]. The fluctuating optical power at the photodiode is proportional to N̂(ω) =

âout(ω) + â†out(ω) [74], with a spectral density given specifically for ∆ = ωm by

SNN (ω) =

ˆ ∞
−∞

dω′ t+(ω)t∗(−ω′)〈âin(ω)â†in(ω′)〉+ η+(ω)η∗+(−ω′)〈âin,i(ω)â†in,i(ω
′)〉

+ s12,+(ω)s∗12,+(−ω′)〈b̂in(ω)b̂†in(ω′)〉+ s∗12,+(−ω)s12,+(ω′)〈b̂†in(ω)b̂in(ω′)〉

= |t+(ω)|2 + |η+(ω)|2 + |s12,+(ω)|2 + nb(|s12,+(ω)|2 + |s12,+(−ω)|2), (2.62)

where the correlations given by (2.49)–(2.54) are used to greatly simplify the expression. Using the

properties of the scattering matrix, |t+(ω)|2 + |η+(ω)|2 + |s12,+(ω)|2 = 1 (energy conservation), we

can simplify (2.62) to

SNN (ω) = 1 +
4κe|G|2

κ2

γinb
2

(
1

(ωm − ω)2 + (γ/2)2
+

1

(ωm + ω)2 + (γ/2)2

)
= 1 +

4κe|G|2

κ2
S̄bb(ω), (2.63)

where we have similarly applied the sideband-resolved approximation to S̄bb(ω). We note that the

signal-to-noise ratio (SNR) improves linearly with the extrinsic coupling rate and that at n̄ = 0, the

SNR vanishes. Equivalently, we can say that at ∆ = ωm, the optical bath is not sensitive to the

zero-point fluctuations of the mechanical system.

We can compare (2.63) to the classical derived equation (2.31) from above by defining the optical

power spectral density at the detector, near ω = ωm, as S̄P(ω) = 2SPP (ω) = 2~2ω2
o |αin|2SNN (ω),

where we assume that in the large detuning approximation, the optical drive is not significantly
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depleted by the cavity. Substituting (2.56) into (2.63), and using (2.41) for the steady state cavity

photon population,

S̄P (ω) = 2~2ω2
o |αin|2 +

8~2ω2
o |αin|2κeg2|α0|2

κ2

γn̄

2

(
1

(ωm + ω)2 + (γ/2)2
+

1

(ωm − ω)2 + (γ/2)2

)
≈ 2~2ω2

o |αin|2 +
~2ω2

oκ
2
eg

2n̄|αin|4

2(∆2 + (κ/2)2)(κ/2)2
× 2π

1

π

γ/2

(ωm − ω)2 + (γ/2)2
, (2.64)

we see we have a nearly identical expression with the addition of the photon shot noise term, the

substitution |β0|2 → n̄, and a unit area Lorentzian function in place of the Dirac delta function (as

discussed at the end of Section 2.1.1).
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Chapter 3

Optomechanical Device Design

The simplicity of the theoretical Fabry-Perot cavity model of optomechanics masks the complexity

and diversity of the experimental realizations, from suspended membranes [23, 24, 42], to micro-

toroids [45, 50], to microwave resonators [35], to larger [37] or more exotic [75] structures. Even

within the Painter group, a variety of optomechanical platforms have emerged, including the “zip-

per” double nanobeam cavities [56, 57], single nanobeam cavities [59, 60], and quasi-2D cavities

[62, 63, 76].

Here, the focus will be on quasi-1D patterned silicon nanobeams designed for backaction cooling

the mean phonon occupation of its mechanical mode, n̄, below unity. From the derivations in

Section 2.2, we already know that this can only be achieved for κ/4ωm < 1. Assuming we are in

the sideband-resolved regime with some large steady state intracavity photon population (but still

in the driven weak coupling regime) and using (2.48) and (2.57), we have

n̄ ≈ γiκ

4|G|2
kBTb
~ωm

. (3.1)

With the minimization of (3.1) in mind, the goal then is to design a device with small intrinsic

optical and mechanical losses (or equivalently, large optical and mechanical quality factors), large

optomechanical coupling, and large mechanical frequency.

These structures will be designed for a silicon-on-insulator substrate (SOI) with a device layer of

220 nm to take advantage of mature fabrication techniques for this material system in the Painter

group. The operating principle is a perturbation in an otherwise periodic dielectric (a “defect”) to

tightly colocalize an optical and mechanical resonance to the same sub-cubic-wavelength volume,

greatly enhancing their interaction strength—an optomechanical crystal. Being periodic structures,

band diagrams will be used to provide an intuitive explanation for the unit cell choice. Finite

element analysis combined with electromagnetic perturbation theory to account for the moving

dielectric boundaries [77] and the photoelastic effect [78] will be used to model the coupling in these

structures. Numerical minimization techniques will be used to optimize the geometric parameters.
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To mitigate mechanical losses in these structures, work in complete phononic bandgaps [63] will

be leveraged. For more detailed discussion and history of the design principles presented here, see

[56, 59, 62].

3.1 Crystal Theory

We begin by briefly reviewing the physics of a periodic dielectric (a significantly more detailed

treatment can be found in [79, 80]). Classical electromagnetism is governed entirely by Maxwell’s

equations, given in its microscopic form supposing an isotropic medium with no free charges or

currents, for an electric field, E(x, t), and a magnetic field, B(x, t), as

∇ ·D = 0, (3.2)

∇ ·B = 0, (3.3)

∇×E = −∂B
∂t

, (3.4)

∇×H =
∂D

∂t
. (3.5)

In these equations, D = ε(x)E is the displacement field related to the electric field by ε(x), the

permittivity of the material, and B = µ(x)H is the magnetizing field, related to the magnetic

field by µ(x), the permeability of the material (equal to the permeability of free space, µ0, for most

materials). Bold variables indicate vector values and x is the coordinate vector. For linear equations,

we can always decompose the field solutions into a sum of time harmonic modes, so without loss of

generality, we can examine Maxwell’s equations for single mode oscillating at ω in the form

E(x, t) = E(x)eiωt, (3.6)

B(x, t) = B(x)eiωt, (3.7)

so we have

∇ · ε(x)E(x) = 0, (3.8)

∇ ·B(x) = 0, (3.9)

∇×E(x) = −iωB(x), (3.10)

∇×B(x) = i
ωεr(x)

c2
E(x), (3.11)

where ε(x) = ε0εr(x), ε0 is the permittivity of free space and we have the convenient relationship

c = 1/
√
µ0ε0 relating the free space constants to the speed of light. Substituting (3.11) into (3.10),
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we have the governing eigenequation

Θ̂B(x) =
ω2

c2
B(x), (3.12)

having defined the Hermitian operator

Θ̂B(x) ≡ ∇× 1

εr(x)
∇×B(x). (3.13)

It can be shown that such equations have an orthogonal set of eigenfunction solutions with real

eigenvalues [81].

3.1.1 Plane Waves

For a homogeneous medium, we can see that the plane wave solution B(x) = B0e
ik ·x (where B0

is any constant vector) is an eigenfunction with eigenvalue |k|2/εr. The governing equation requires

(ω/c)2 = |k|2/εr, known as the dispersion relation.

3.1.2 Translational Symmetry

Suppose we have another operator Ô satisfying the canonical commutation relation [Θ̂, Ô] = 0 and

eigenfunction B(x) satisfying (3.12). Then we have

Θ̂ÔB(x) = ÔΘ̂B(x) =
ω2

c2
ÔB(x), (3.14)

which says that ÔB(x) = αB(x) for some simple scalar value α. This is itself an eigenequation, so

B(x) is also an eigenfunction of Ô. Thus, if we can find operators that commute with Θ̂ (that are

hopefully simpler than Θ̂), we can use them to classify solution of (3.12).

One possibility is the discrete translation operator T̂a ≡ f(x+ na) for integer values of n. If we

also have Taε(x) = ε(x) (the dielectric is periodic in the a direction with periodicity a = |a|), then

clearly, the commutator [T̂a, Ô] vanishes. For simplicity, consider the case where a is parallel to the

x-axis. The translation operator then has a simple set of eigenfunctions with the form eikx, with

eigenvalues eikna which we can label with a wavenumber k. We see that the wavevector eikx and

ei(k+2πm/a)x (for some integer m) have the same eigenvalue and thus form a degenerate eigenspace

spanned by the orthonormal set of eigenfunctions, ei(k+2πm/a)x, labelled by m. Defining b = (2π/a)x̂

as the primitive reciprocal lattice vector, we must have then that

Bk(x) =
∑
m

Bk,m(x, y)ei(k+mb)x

= eikxB̄k(x), (3.15)
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where B̄k is periodic in x by construction.

This result that discrete periodicity results in a solution that is a product of a plane wave and a

periodic function is known as Bloch’s theorem with the Bloch state given by (3.15). A Bloch state

is characterized by the property that states with wavevectors differing by integer multiples of the

reciprocal lattice vector are identical, so we need only be concerned with −π/a ≤ k < π/a (called the

Brillouin zone). We can further restrict the range of k to the irreducible Brillouin zone 0 ≤ k < π/a

by time reversal symmetry (valid for all the systems studied here). Typically, k = 0 is called the Γ

symmetry point and k = π/a is called the X symmetry point.∗

To determine the actual form of bk(x), we solve (3.12) using (3.15) as the ansatz, giving the new

form of the governing equation

(ikx̂+∇)× 1

ε(x)
(ikx̂+∇)× B̄k(x) =

ω2(k)

c2
B̄k(x), (3.16)

subject to

(ikx̂+∇) · B̄k(x) = 0 (3.17)

B̄k(x) = B̄k(x+ nax̂), (3.18)

where the last line is the periodic boundary condition. Thus, for each value of k, we expect to find an

infinite number of eigenvalue solutions, ωn(k), continuous in k, but discretely spaced in n. Plotting

ωn(k) against k in the irreducible Brillouin zone yields the band structure of a periodic structure,

from which many of its optical properties can be inferred.

3.1.3 Bandgaps and Localization

We can plot the eigenvalue solutions, ωn(k), for the case where ε(x) is composed of alternating

layers of ε1 and ε2, with equal thickness, a/2, in the x̂ direction (Figure 3.1). We see that there

are frequency ranges where no crystal modes exist for any value of k, called bandgaps. The bands

immediately below and above the bandgap are referred to as the dielectric and air band respectively

(due to the distribution of field energy), analogous to the valence and conduction band in electronic

band structures.

If we artificially introduce a traveling wave at a frequency inside the bandgap into the crystal, in

the crystal basis, it will be assigned a complex k vector resulting in exponential decay in the spatial

coordinate (since eikx now has a real component and is no longer purely oscillatory). We can see

this by expanding the dispersion relation at the band edge to second-order, giving ∆ω ≈ α(∆k)2,

∗In higher degrees of symmetry, solutions are instead labeled by k and additional symmetry points will be introduced.
For example, a 2D periodic rectangular lattice of circular holes has an irreducible Brillouin zone given by 0 ≤ kx <
π/a, 0 ≤ ky ≤ kx, where we label kx = ky = π/a as the M point.
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Figure 3.1: Bandgaps in a 1D periodic dielectric. a, Dielectric configuration for the example in
the text, showing alternating dielectric slabs of ε1 and ε2, each of width a/2. b, Corresponding band
diagram for ε1 6= ε2 with the red region indicating a frequency range for which no real solutions
exist (a bandgap). The band above the bandgap is typically referred to as the air band, and the
band below the bandgap is typically referred to as the dielectric band.

where α depends on the curvature of the band and the linear term disappears due to time-reversal

symmetry. For the air band, we can see from Figure 3.1b that α > 0, so for ∆ω < 0 (moving into

the bandgap), ∆k =
√

∆ω/α, and k acquires an imaginary component. The dielectric band yields

the same result for α < 0 and ∆ω > 0. From this, we can infer that the decay factor is proportional

to ∆ω/α, so we get the strongest attenuation factor for frequencies far away from the band edge,

and for bands that are very flat.

We can introduce a defect into this dielectric by changing the thickness of a single layer and

approximate the entire system as a dielectric slab surrounded on either side by a frequency depen-

dent mirror (with large reflection coefficients for frequencies in the bandgap). Thus, at frequencies

commensurate with the gap, we effectively have an optical cavity, leading to a discretized optical

mode spectrum in the bandgap region with frequency spacing inversely proportional to the width

of the defect layer. By this reasoning, for a defect layer thickness of (1 + δ)a/2, with 0 < δ � 1,

the defect state will be very close dielectric band. Conversely, for 0 < −δ � 1, the defect state

will be very close to the air band. Thus, we can talk about defects that “draw” modes from the

air/dielectric band.

3.1.4 Phononic Bloch States

A similar theory can be developed for acoustic waves propagating in a solid [82, 83], though the

formulation is slightly more complex owing to the mixing of the longitudinal and transverse compo-

nents of acoustic waves so that for a displacement field Q(x), ∇ ·Q(x) 6= 0 in general. An excellent

practical resource for the subject, in the context of finite element simulation can be found in [84].

The governing equation for an acoustic wave traveling in a homogeneous medium with scalar density

field, ρ(x), rank 4 elasticity tensor, C(x), and no body forces, is (in component notation for clarity)

1

ρ(x)
∇jCijmn(x)∇nQm(x, t) =

∂2

∂t2
Qi(x, t). (3.19)
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The elasticity tensor in Voigt notation (Appendix A.8) for an isotropic medium is

C =



c11 c12 c12 0 0 0

c12 c11 c12 0 0 0

c12 c12 c11 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c44


, (3.20)

where c11 = K(x)+4µ(x)/3, c12 = K(x)−2µ(x)/3, and c44 = µ(x), K(x) is the bulk modulus and

µ(x) is the shear modulus. Similar to above, we can assume a time harmonic solution and write the

governing equation as

Φ̂Q(x) = ω2Q(x), (3.21)

where

Φ̂Q(x) =
1

ρ(x)
∇T (C(x)∇Q(x, t)). (3.22)

In principle then, we can derive a phononic Bloch state (analogous to the photonic Bloch state),

labeled by a wavenumber, k, with an associated spectrum of eigenvalue solutions, ωn(k).

3.2 Index Guiding

We consider the case of an infinite slab, ε1, embedded in an infinite dielectric medium, ε2 (Fig-

ure 3.2a), with a wavevector incident on the interface as shown in Figure 3.2b. We have the bound-

ary conditions ω1 = ω2 (by energy conservation) and k1,‖ = k2,‖ (by translation invariance, where ‖

is relative to the boundary). Since k‖ = |k| sin θ and ω = c|k|/n (the dispersion relation from above,

and n =
√
ε, is the refractive index of the material), we have

n1 sin θ1 = n2 sin θ2, (3.23)

which is effectively Snell’s law from ray optics. An equivalent to total internal reflection when

n2 < n1 must also exist for wavevectors. If we consider the field far away from the boundary in ε2, it

must be essentially composed of free propagating plane waves, each with a characteristic frequency,

ω, and wavevector amplitude set by the dispersion relation. The wavevector amplitude of these

plane waves can be written as the quadrature sum of the parallel and perpendicular components,

|k|2 = (ωn2/c)
2 = k2

⊥ + k2
‖. Since there is no condition limiting k⊥, each value of k‖ has associated
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Figure 3.2: Index guiding in an infinite slab. a, Dielectric configuration for the example in
the text, showing an infinite dielectric slab, ε1, in an otherwise isotropic dielectric medium, ε2, with
parallel (‖) and perpendicular (⊥) directions indicated. b, A wavevector, k1, is incident on the ε1–ε2

boundary at angle θ1. The resulting k2 wavevector depends on the boundary conditions discussed
in the text. c, Corresponding band diagram with the gray region representing the continuum of
modes above the light line (solid green line, described by ω = ck‖/

√
ε2), with discrete modes below

(blue lines).

with it a continuum of modes above ω > ck‖/n2, corresponding to |k⊥| ∈ [0,∞). The equality

ω = ck‖/n2 is known as the light line. The modes below the light line, have imaginary wavevector

amplitudes (k2
⊥ = (n2ω/c)

2 − k2
‖ < 0) in ε2, which results in exponential decay away from the

interface. Thus, they are localized to ε1 and are termed index-guided modes.

In quasi -1D waveguide structures like nanobeams, periodicity (and therefore Bragg confinement)

exists only along the axial direction. It is this effect that gives rise to confinement in the off-axial

directions.

3.3 Optomechanical Coupling Rate

The optomechanical coupling rate,

g =
dωo
dα

xzpf =
dωo
dα

√
~

2meffωm
, (3.24)

defined with respect to the generalized coordinate, α, and effective motional mass, meff, measures the

frequency shift in the optical mode frequency imparted by the zero-point motion of the oscillator. In

the canonical Fabry-Perot system, the simplest choice of generalized coordinate is the displacement

of the movable end mirror, resulting in a motional mass that coincides with the mirror’s true mass.

In more complex systems such as nanobeams where the mode displacement is represented by a vector

field, Q(x), a choice for the generalized coordinate is an overall scaling parameter of this field. For

a unit-normalized mode displacement field, q(x), we can parameterize the motion of the mode as

Q(x) → Q(α,x) = αq(x). The effective mass is related to this choice by the requirement that the

potential energy of this parameterized oscillator must of course be equal to the true potential energy.
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This condition can be expressed as

1

2
ω2
m

ˆ
dx ρ(x)|Q(x)|2 =

1

2
meffω

2
mα

2, (3.25)

so we have for our particular choice of α,

meff =

´
dx ρ(x)|Q(α,x)|2

α2
=

ˆ
dx ρ(x)|q(x)|2, (3.26)

where ρ(x) is the scalar density field of the material.

To compute the frequency shift with respect to a change in α, we employ first-order electromag-

netic perturbation theory [85], giving

dωo
dα

= −ωo
2

〈E(x)|dε(x)
dα |E(x)〉

〈E(x)|ε(x)|E(x)〉
= −ωo

2

´
dx dε(x)

dα |E(x)|2´
dx ε(x)|E(x)|2

, (3.27)

where E(x) is the unperturbed electric field vector and ε(x) is the permittivity. We consider two

effects which give rise to frequency shifts: the moving dielectric boundary, caused by the motion of

the mechanical mode, and the photoelastic effect, caused by a change in the refractive index due

to dynamic stresses. While there are many other effects that can contribute (e.g., thermorefractive

effects, carrier density changes, surface effects), they were assumed to be negligible in comparison.

The total optomechanical coupling rate is then approximated by

g = gmb + gpe =

(
dωo
dα

∣∣∣∣
mb

+
dωo
dα

∣∣∣∣
pe

)
xzpf. (3.28)

3.3.1 Moving Dielectric Boundary

We follow here the derivation by Johnson et al. [77] and represent the nanobeam as a closed volume

of uniform dielectric, ε1, undergoing a perturbation specified by the displacement field, Q(α,x)

(Figure 3.3a). Let us first consider the simpler 1D situation, ε(x) = ε2 +(ε1−ε2)Θ(x−x0−Q(α, x0))

(where Θ(x) is the Heaviside function and x0 is the location of the unperturbed boundary; shown

in Figure 3.3a). We find then

〈
E(x)

∣∣∣∣dε(x)

dα

∣∣∣∣E(x)

〉
=

〈
E(x)

∣∣∣∣ dε(x)

dQ(α, x)

dQ(α, x)

dα

∣∣∣∣E(x)

〉
=

ˆ
dx (ε1 − ε2)δ(x− x0 −Q(α, x0))

dQ(α, x)

dα
|E(x)|2

=
dQ(α, x)

dα
(ε1 − ε2)|E(x)|2

∣∣∣∣
x=x0

, (3.29)

where Q(α, x0)� x0 (for a small perturbation). Returning to the original problem and parameter-

izing the surface using (u, v), we can define a surface unit normal, n̂(u, v), at the ε1–ε2 interface.
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Figure 3.3: Moving dielectric boundary. a, From [77], schematic showing an infinite space of
permittivity ε2 in which we place a closed volume of permittivity ε1 (solid line) with a perturbation
specified by the surface function h(α, u, v) = Q(α, u, v) · n̂(u, v) (dashed line). The surface itself has
been parameterized with (u, v). b, An equivalent 1D case for a dielectric boundary at x0, perturbed
by h(α) = Q(α, x0) (dashed line).

Then, the volume integral in the numerator of (3.27) becomes a surface integral given by

〈
E(x)

∣∣∣∣dε(x)

dα

∣∣∣∣E(x)

〉
=

˛
A

dA
dQ(α, u, v) · n̂(u, v)

dα
(ε1 − ε2)|E(u, v)|2

=

˛
A

dA
dh(α, u, v)

dα
(ε1 − ε2)|E(u, v)|2, (3.30)

in analogy to (3.29), and we have also set dA ≡ dudv and defined h(α, u, v) ≡ Q(α, u, v) · n̂(u, v).

The problem with this expression is that it is generally undefined, owing to the discontinuous nature

ofE⊥ ≡ E · n̂ (since we require ε1E⊥,1 = ε2E⊥,2 across a boundary). Mathematically, this manifests

as a finite first-order correction, even for vanishing α, ruining the assumptions of perturbation theory.

For ε1 ≈ ε2, we could pick a side and proceed with the analysis, but for silicon in air (with refractive

indices of 3.48 and 1 respectively), this is clearly not good approximation.

The solution to this is to find a dielectric function that smoothly transitions from ε1 to ε2, allowing

the field components to stay continuous. If such a dielectric function could be parameterized in a

way that this transition, in the limit, becomes the step function we desire, the uniqueness theorem of

Maxwell’s equations guarantees that the resultant expression will be correct (as long as the limit is

well defined). With this in mind, we focus on a small, locally flat, region of the interface and define

the coordinate, x, parallel to n̂ with the origin at the boundary. We have then (nearly identical to

the 1D case),

ε(x) = ε1 + (ε2 − ε1)Θ(x− h). (3.31)

In this local coordinate system, we can define an anisotropic permittivity tensor

εs(x) =


ε̃s(x) 0 0

0 ε̄s(x) 0

0 0 ε̄s(x)

 , (3.32)
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where

ε̄s(x) =

ˆ
dx′ gs(x− x′)ε(x′), (3.33)

1

ε̃s(x)
=

ˆ
dx′ gs(x− x′)

1

ε(x′)
, (3.34)

and gs(x) is a unit area, localized distribution around x = 0 with the property lims→0 gs(x) = δ(x).

We see that in the limit s→ 0, εs(x) = ε(x). From the properties of derivatives, we also have

dε̄s(x)

dh
= (ε1 − ε2)gs(x− h), (3.35)

dε̃s(x)

dh
= −ε̃s(x)2

(
1

ε1
− 1

ε1

)
gs(x− h). (3.36)

Still in the local coordinate system, the electric field can be separated into components perpendicular

to the boundary, E⊥, and parallel to the boundary, E‖. Then E⊥ is sensitive only to ε̃ and E‖ is

sensitive only to ε̄. We can evaluate the integral 〈E|dεs(x)
dα |E〉 in this flat region, giving

〈
E

∣∣∣∣dεs(x)

dα

∣∣∣∣E〉 =

〈
E

∣∣∣∣dεs(x)

dh

dh

dα

∣∣∣∣E〉
= dA

dh

dα

ˆ
dx

(
(ε1 − ε2)|E‖|2 −

(
1

ε1
− 1

ε2

)
|ε̃s(x)E⊥|2

)
gs(x− h). (3.37)

Integrating this expression over the entire surface, (u, v), and taking the limit s→ 0 yields

˛
A

dA
dh(α, u, v)

dα

(
(ε1 − ε2)|E‖(u, v)|2 −

(
1

ε1
− 1

ε2

)
|ε(u, v)E⊥(u, v)|2

)
, (3.38)

where the integrand is now well behaved across the boundary. The full first-order correction due to

the moving dielectric boundary is thus

dωo
dα

∣∣∣∣
mb

= −ωo
2

¸
A
dA q(u, v) · n̂(u, v)

(
∆ε|E‖(u, v)|2 −∆ε−1|D⊥(u, v)|2

)
´
dx ε(x)|E(x)|2

, (3.39)

where ∆ε = ε1 − ε2 and ∆ε−1 = ε−1
1 − ε

−1
2 .

3.3.2 Photoelastic Effect

The motion of the mechanical mode creates a local variation in strain which that can alter the

refractive index of the material. We once again compute the first-order frequency correction under

the influence of the displacement field Q(α,x) = αq(x) via (3.27). The photoelastic shift for a
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Wavelength p11 p12 p44 Ref.
1.15 µm −0.101± 0.007 0.009± 0.001 − [87]
3.39 µm −0.094± 0.005 0.017± 0.001 −0.051± 0.002 [87]

Table 3.1: Photoelastic coefficients for silicon. We note that we estimate the value for λo =
1.55 µm as somewhere between the listed values since data for that wavelength is not available.

general refractive index tensor, ε, is given by [86] to be

dε

dα
= −ε

(
pS

ε0

)
ε, (3.40)

where p is the rank-four photoelastic tensor and S is the strain tensor with matrix elements defined

as

Sij =
1

2

(
dqi
dxj

+
dqj
dxi

)
. (3.41)

For an isotropic medium (encompassing all the systems in this thesis), this simplifies to

dεij
dα

= −ε0n
4pijklSkl, (3.42)

where n =
√
ε/ε0 is the refractive index and εij = εδij . The symmetry of ε and S also requires

pijkl = pjikl = pijlk = pjilk so it is convenient to use a contracted index notation (Appendix A.8)

where

S1 = Sxx,

S2 = Syy,

S3 = Szz,

S4 = 2Syz,

S5 = 2Sxz,

S6 = 2Sxy,

(3.43)

which also allows the photoelastic tensor to be expressed as a 6 × 6 matrix. Specifically for silicon

(which again, encompasses all of the systems discussed in this thesis), the photoelastic tensor has

the form [86]
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p =



p11 p12 p12 0 0 0

p12 p11 p12 0 0 0

p12 p12 p11 0 0 0

0 0 0 p44 0 0

0 0 0 0 p44 0

0 0 0 0 0 p44


, (3.44)

with coefficients given by Table 3.1, and it is assumed that the crystal unit cell coordinate system

is aligned with the coordinate system for the electric field (e.g., 〈100〉 corresponds to the x-, y-, and

z-axis).∗ In the contracted index notation, (3.42) can be written

dε

dα
= −ε0n

4pS = −ε0n
4



p11S1 + p12S2 + p12S3

p12S1 + p11S2 + p12S3

p12S1 + p12S2 + p11S3

p44S4

p44S5

p44S6


, (3.45)

which can be easily converted back to Cartesian indices by reversing (3.43), giving

dε

dα
= −ε0n

4


p11Sxx + p12(Syy + Szz) p44Sxy p44Sxz

p44Sxy p11Syy + p12(Sxx + Szz) p44Syz

p44Sxz p44Syz p11Szz + p12(Sxx + Syy)

 .
(3.46)

The full first-order correction due to the photoelastic effect is thus

dωo
dα

∣∣∣∣
pe

=
ωoε0n

4

2

ˆ
Si

dx
(

2Re{E∗xEy}p44Sxy

+ 2Re{E∗xEz}p44Sxz

+ 2Re{E∗yEz}p44Syz

+ |Ex|2(p11Sxx + p12(Syy + Szz))

+ |Ey|2(p11Syy + p12(Sxx + Szz))

+ |Ez|2(p11Szz + p12(Sxx + Syy))
)/ˆ

dx ε|E|2, (3.47)

∗If this is not the case, we can construct a rotated form of the photoelastic tensor, shown in Appendix C.
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where ε and the elements of both E and S are functions of coordinate, and the numerator is a

volume integral over only the silicon material.

3.4 Designing Nanobeams with Numerical Simulations

Numerical simulations were done primarily using a combination of MIT Photonic-Bands (MPB) [64]

and COMSOL Multiphysics [65] with MATLAB [88] support. The former was used for generating

optical band diagrams. The latter was used for mechanical band diagrams and full optical/mechan-

ical cavity simulations. Numerous scripts were developed to facilitate these simulations, and are

listed in Appendix F.

3.4.1 Unit Cell Design

We first examine the nominal unit cell of the nanobeam as shown in Figure 3.4a, geometrically a

simple block with a hole. While technically the unit cell can have any number of holes in any shape

(indeed, square holes were initially used quite successfully [59, 60]), a single oval hole was chosen

for simplicity in fabrication, and because nanobeams with circular holes have previously produced

cavity modes with large optical quality factors [89]. The corresponding optical (Figure 3.4c) and

mechanical (Figure 3.4f) band diagram is generated using MPB and COMSOL respectively. In

waveguide structures, the continuum of unguided optical modes above the light line precludes the

existence of a complete photonic bandgap, but as they couple poorly to the guided modes below

the light line (quantified by their small overlap integral), we can consider instead “quasi-bandgaps”

which allow for such weakly coupled modes in the gap. By classifying bands by their vector symmetry

across the y and z planes, we can extend this definition to include modes of differing symmetry;

while technically possessing vanishing mode overlap, in reality they couple weakly due to symmetry

breaking introduced by the fabrication process. This quasi-bandgap idea extends analogously to

phononics, without having to worry about the unguided continuum of modes since acoustic modes

are confined to propagate in the material.

The challenge now is first picking an appropriate pair of optical and mechanical modes, and

then determining a perturbation to the nominal unit cell that simultaneously localizes the pair in

their respective quasi-bandgaps. The optomechanical coupling equation (3.28) allows many of the

mechanical modes to be eliminated as candidates on the basis of symmetry arguments. In (3.39),

we see that the electric field components contribute as squared terms (even functions) whereas

the displacement field contributes as linear terms (odd functions). In (3.47), lower-order optical

modes typically have a dominant field polarization so that the first three terms are generally much

smaller then the last three. In the last three terms, we see that again, the electric field components

contribute as even functions while the displacement field components contribute as odd functions.
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Figure 3.4: Nanobeam unit cell band diagrams. a, The nominal, and b, the defect unit
cells of the nanobeam specified by the set of geometric (a, t, w, hx, hy). The related c, optical,
and f, mechanical band structure for propagation along the x-axis in the nominal unit cell, with
quasi-bandgaps (red regions) and cavity mode frequencies (red dashed) indicated. In c, the light
line (green) divides the diagram into two regions: the gray shaded region above representing a
continuum of unguided modes, and the white region below containing guided modes with y-odd and
z-even vector symmetry in the electric field (black), and modes of other vector symmetries (blue
dashed). In f, modes that are y- and z-symmetric (black), and modes of other vector symmetries
(blue dashed) are indicated. Emphasis is placed on the bands from which the localized cavity modes
are formed (thick black). Lastly, the frequency tuning of d, the X-point optical, and e, the Γ-point
mechanical mode of interest, corresponding to changing from the nominal to the defect unit cell
while keeping the k vector constant, is shown. Below the respective tuning plots are the Ey(x) field
solutions and the displacement field, |Q(x)|, solutions.

We can therefore restrict consideration to mechanical modes that are symmetric across the y and z

planes. We can further restrict the choice of mechanical modes to the Γ symmetry point by noting

that modes at X symmetry point experience a π phase change at the unit cell boundary, so that

unit cell pairs will nominally have vanishing optomechanical coupling.

Based on this intuition, we choose an optical mode drawn from the X symmetry point of the

dielectric band and a mechanical “breathing” mode (with a displacement field predominantly along

the y-axis) drawn from the Γ-point (from the emphasized bands in Figure 3.4c, f). From Figure 3.4d–

e, we see that simultaneously reducing a (causing the optical mode frequency to increase), and

“squishing” the hole so that hy/hx decreases (effectively increasing the motional mass, causing a

reduction in the mechanical mode frequency) is the desired perturbation.
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3.4.2 Cavity Design

An optomechanical cavity can be formed by transitioning (over M unit cell periods) from the nominal

unit cell composing the “mirror” region, to the defect unit cell. The confinement of both the optical

and mechanical mode is achieved in the axial (x̂) direction by Bragg scattering in this mirror region.

Index guiding confines the optical mode in the transverse (ŷ and ẑ) direction. Labeling these

transition unit cells with an index, j ∈ [0,M ], starting with the defect unit cell and ending the

with nominal unit cell, we need to define three functions of this index: aj , to set the scaling of the

unit cell width (a), rj , to set the scaling of the hole ratio (hy/hx), and sj , to set the scaling of

the unit cell hole area. These functions can essentially have any form, as long as they conform to

the desired perturbation from the previous section (to ensure that a localized optomechanical mode

exists). This requirement can be represented as the set of conditions

0 < rj < rj+1, (3.48)

0 < aj < aj+1, (3.49)

rM = sM = aM = 1. (3.50)

For example, in [59], we had

aj = 1− d

((
M − i
M

)2

− 1

)
, (3.51)

where d = 1−min{aj} is the “depth” of the defect, and rj = sj = 1.

In practice, to reduce this infinitely large parameter space to a slightly smaller infinity, we set

1 − sj = χ(1 − aj) and rj = aξj , where χ ∈ (−∞,∞) and ξ ∈ (0,∞). This is so that the only

function we need to define is aj , with the other two functions related by a simple scalar parameters.

We further note that we would like aj to be as smooth as possible. To see why, consider an

electromagnetic wave propagating along the nanobeam. For a particular k-vector, each unit cell

has a basis of normal modes which compose this propagating wave. However, for every k-vector,

there are unconfined modes located above the light line. Thus, if adjacent unit cells are significantly

different, the vector for the propagating wave in the local unit cell basis might have a significant

number of its components in these unconfined modes, leading to large scattering losses. This idea

is explored extensively in [90] via Fourier analysis of the optical cavity mode, resulting in very high

quality factor 2D photonic crystals with very small mode volumes. The problem with (3.51) is that

the change in ∆aj = aj+1 − aj at j = M in is quite large. We can fix this by requiring

da(x)

dx

∣∣∣∣
x=0,1

= 0, (3.52)
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Figure 3.5: Well function shape. A candidate well function that smoothly transitions from a
nominal unit cell width aM to a defect unit cell width of a0 = aM (1− d).

having defined x ≡ j/M ∈ [0, 1] for simplicity. A simple solution that conforms to the requirements

above is a(x) = 1 − d(2x3 − 3x2 + 1) (shown in Figure 3.5). We can further control the maximum

slope by mapping

x→ y(x) =

 1
2 (2x)η, if x ≤ 0.5,

1− 1
2 (2(1− x))η, if x > 0.5.

(3.53)

Thus, a nanobeam cavity design can be completely specified by the set of parameters (hx, hy,

anominal, t, w, M , d, χ, ξ, η).

Finite element method (FEM) simulation of the entire structure is used to determine the cavity

mode frequencies (ωo and ωm), optomechanical coupling rate, g (estimated using (3.28); see Ap-

pendix F), and radiation-limited optical quality factor, Qo. To maximize g and Qo, we assign each

design a fitness value given by F ≡ −g(min{Qo, Qcutoff})2. In nanobeams, surface scattering effects

typically limit quality factors to ∼106, so we introduce a Qcutoff = 5 × 106 ceiling to prevent un-

realizably high radiation-limited simulation Qo values (occasionally >108) from unfairly weighting

the fitness. We have here an 8 parameter optimization problem (since t is fixed by the choice of

substrate and anominal is used to scale the fundamental optical cavity mode wavelength to between

1520 nm and 1570 nm) amenable to a variety of numerical minimization techniques. For a com-

putationally expensive fitness function with a large parameter space, a good choice of optimization

algorithm is the Nelder-Mead method [91, 92]. As a simplex search algorithm (as opposed to a

gradient descent algorithm), it does not have smoothness requirements for the fitness function, and

as a consequence, is also quite resistant to simulation noise. Conveniently, a modern variant of this

method is already implemented in MATLAB’s fminsearch function. Procedurally then, to create

an optimized nanobeam design:

1. Choose a functional form for ai, ri and si parameterized by set of scalar parameters. In this

case, we have (ξ, χ, η).

2. Randomly generate an initial parameter vector (hx, hy, w, M , d, χ, ξ, η).

3. Since the Nelder-Mead method is natively an unbounded search algorithm, we must ensure the
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Figure 3.6: Nelder-Mead simplex search path. A slice of the multidimensional parameter
space explored by the Nelder-Mead minimization method. The outlined points indicate randomized
starting locations and the color of the point indicates the normalized value of the fitness function,
F . We see a clear convergence to large values of F .

parameter vector is a realizable geometry by verifying that certain conditions are met (such as,

but not limited to, requiring (hx, hy) > (hx,min, hy,min) to ensure the holes are above a certain

size, d ∈ (0, 1) to ensure the well function makes sense, and hy < w to ensure the holes are not

larger than the beam width). If there are violated conditions, set F =∞ and go to step 6.

4. Determine the anominal that gives a fundamental cavity optical mode frequency of approx-

imately 1550 nm (nearly always possible in practice). If this fails, set F = ∞ and go to

step 6.

5. Determine ωo, ωm, and g by simulation and compute the fitness of the design. If F has not

changed appreciably over the last few iterations, we have reached a local minimum. We choose

a new initial point by going to step 2.

6. Generate a new parameter vector via the Nelder-Mead method and go to step 3.

By continually reseeding the optimization algorithm, we mitigate the problem of converging on

local minima. A visual representation of the search path is shown in Figure 3.6. We follow these

steps until we have a design with a g and Qo that we are satisfied with. This of course does not

guarantee we have the best structure but it has, in practice, returned good results.

3.4.3 Mechanical Quality Factor

Unaddressed so far is the issue of mechanical losses in nanobeams, sources of which include the

Akhieser mechanism, the Landau–Rumer mechanism, thermoelastic damping, and clamping losses
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[93]. The overall mechanical quality factor is given simply by

1

Qtotal
=

1

QAK
+

1

QLR
+

1

QTE
+

1

QCL
+ · · · , (3.54)

where each term can be modeled or computed individually for the nanobeam geometry.

Akhieser\Landau–Rumer Losses. The first two are phonon–phonon interaction theories de-

scribing the absorption of acoustic waves by the bulk material on differing length scales. Akhieser

effects [94] are valid only for an acoustic wavelength much larger than the mean free path of the

thermal phonons (λm � `, or equivalently in terms of acoustic frequency and thermal phonon life-

time, ωmτ � 1). In this regime, acoustic phonons interact with ensembles of thermal phonons,

perturbing them away from thermal equilibrium. The process of relaxing back to equilibrium via

phonon-phonon collisions extracts energy from the acoustic wave and results in damping. On the

other hand, the Landau–Rumer effects are valid only for ωmτ � 1, where acoustic phonons interact

with individual thermal phonons, operating primarily on the principle of three-phonon interactions

[95]. In silicon, we can estimate the thermal phonon lifetime as [96]

τ =
3κ

CV c2s
, (3.55)

where κ is the thermal conductivity, CV is the volumetric specific heat at constant volume, and cs is

averaged longitudinal and shear wave velocities (see Appendix E for temperature dependent values).

This corresponds to ωmτ = 1 at T ≈ 100 K, separating the two regimes. The absorption coefficients

for these two effects are given by [97]

α =


πγ2ω2

mCV Tτ

3ρc3s
, if ωmτ � 1 (Akhieser),

πγ2ωmCV T

4ρc3s
, if ωmτ � 1 (Landau-Rumer),

(3.56)

where γ is the average Grüneisen coefficient [98] and ρ is the density. The quality factor may be

estimated from this as Q = ωm/2αcs.

Thermoelastic Damping. We now consider a more macroscopic model of intrinsic material

damping. The compression (and rarefaction) of material under cyclic stress causes local heating

(and cooling), leading to temperature gradients. The resultant heat flow is an entropy increasing

process, resulting in net energy loss [99]. As the name suggests, it arises from a coupling between

the temperature field, T , and the vector displacement field, Q, given for an isotropic, homogeneous
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a

b
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Figure 3.7: Thermoelastic damping simulation. Thermomechanical FEM simulations for the
4 GHz mechanical breathing mode at 300 K. The normalized thermal profile is plotted for a, 0, and
b, π phase shifts.

material, by [100]

ρ
∂2Q

∂t2
= ∇TC(∇Q− αTI), (3.57)

CV
∂T

∂t
= κ∇2T − T0

∂

∂t
αTr {C∇Q} , (3.58)

where (3.58) is the heat balance equation,

T
∂S

∂t
= κ∇2T (3.59)

linearized about some reference temperature, T0,

S = Cv log

(
T

T0

)
+ αTr {C∇Q} (3.60)

is the entropy per unit volume for a linear thermoelastic solid, α is the coefficient of thermal ex-

pansion, κ is the thermal conductivity, and C is the stiffness tensor. This pair of coupled partial

differential equations can be solved numerically in COMSOL for a particular nanobeam geometry

to determine the thermoelastic loss rate and corresponding quality factor (Figure 3.7).

Clamping Losses. Lastly, we consider losses attributed to acoustic energy leaking into the sub-

strate via the clamping points of the nanobeam. The Bragg region of the nanobeam provides expo-

nential attenuation of modes within the bandgap so naively one might expect to be able to make this

loss vanishingly small simply by extended the number of mirror periods. We recall however that we

only have a quasi-bandgap, so the small, symmetry-breaking defects introduced in the fabrication

process couples the confined cavity mode to the unconfined modes of alternate symmetries, leading

to energy leakage regardless of the number of mirror periods. We can model this effect in COMSOL

by randomly offsetting the holes of the nanobeam by some amount specified by a normal distribution

with 0 mean and δd standard deviation, and measuring the energy radiated at the clamping point
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Figure 3.8: Temperature dependence of mechanical losses. Various contributions to the
total mechanical Qm for an 4 GHz mechanical breathing mode as a function of temperature. The
black dashed line separates the plot into the Akhieser and Landau–Rumer regimes, with respective
quality factor contributions, QAK (red line) and QLR (green line). The thermoelastic damping
limited quality factor, QTE, is indicated using red #’s, and the solid blue and increasingly spaced
dashed blue lines indicates estimated clamping loss limited quality factors, QCL, for δd of 0 nm,
1 nm, 2 nm, 4 nm, and 8 nm. We have additionally included experimentally measured Qm values
of a phonically shielded nanobeam for comparison (black #), suggesting the presence of alternative
dominant loss factors.

per oscillation cycle.∗ By repeating this simulation a large number of times for different values of

δd, we can estimate the Q due to these losses.

Once an optimized nanobeam design using the procedure from Section 3.4.2 is produced, we

can estimate the losses for that particular geometry as a function of temperature. The individual

theoretical contributions from each loss source for a 4 GHz mechanical breathing mode are plotted in

Figure 3.8. We see that at room temperature (300 K), losses due to Akhieser effects, thermoelastic

damping and clamping effects compete as the dominant loss mechanism. At low temperatures

(<30 K), it is clear that theoretically, clamping losses dominate. While intrinsic material losses

are difficult to circumvent, clamping losses are entirely geometry dependent and can be mitigated

with clever design. We might consider choosing a different unit cell design or mechanical mode

such that the mirror region has a complete mechanical bandgap. In practice, this is too restrictive

of a requirement in quasi-1D structures and it is very difficult to find an appropriate optical and

mechanical mode pair. A much simpler solution is to surround the nanobeam in a patterned silicon

membrane with a complete phononic bandgap, strongly confining acoustic energy to the beam. The

2D “cross” phononic crystal design [62] has previously demonstrated this to great effect [63], and

the wide tunability of the gap essentially allows the mechanical loss engineering to be decoupled

from the nanobeam design. By carefully choosing ca, ch and ct in the 2D unit cell (Figure 3.9a), it

∗The procedure for mechanical Q simulation is outlined in detail in [59].



41

Γ X M Γ

600 nm

X M Γ

616 nm

X M Γ

633 nm

X M Γ

650 nm

X M Γ

667 nm

X M Γ

683 nm

X M Γ

700 nm

X M Γ

717 nm

X M Γ

733 nm

X M Γ

750 nm

0

1

2

3

4

5

6

Fr
eq

ue
nc

y 
(G

H
z)

t

ca

ct

ch
10

lo
g 10

(|Q
|2 /m

ax
{|Q

|2 })

0

–100

0 2 4 6 8 10 12 14 16
102

104

106

108

1010

1012

1014

Q
CL

δd (nm)

a b

c d

Figure 3.9: Modeling the phononic shield and clamping losses. a, The unit cell of the 2D
phononic crystal that, for properly chosen set of geometry parameters (ca, ch, ct, t), will act as a
phononic shield for the mechanical mode at ωm. b, Band diagrams for the phononic shield unit
cell highlighting the tunability of the band gap (light red) as a function of ca, with t = 220 nm,
ct = 0.25ca, and ch = 0.85ca. The mechanical mode frequency, ωm, is represented with the red
dashed line, indicating ca = 650 nm is a good choice for the unit cell size. c, FEM simulation of the
normalized squared displacement field (proportional to mechanical energy) for a structure with and
without a phononic shield, with the latter suppressing radiative energy by >100 dB. d, A comparison
of quality factors from clamping loss simulations as a function of random perturbation amplitude,
δd, as outlined in the text, with (green dashed) and without (red dashed) a phononic shield.

can be seen from Figure 3.9b that the complete phononic bandgap can be tailored to be centered

on ωm. With an appropriate shield in place, we repeat the clamping loss simulations outlined above

and see a 6 order-of-magnitude improvement on Qclamping (Figure 3.9c–d).

We experimentally measure the Qm values in shielded devices as a function of local device

temperature and draw a comparison to the theoretically predictions (black #’s in Figure 3.8). That

the measured quality factors are a order of magnitude lower than the theoretically dominant loss

in all temperature regimes suggest additional mechanism for mechanical dissipation. The large

variation in mechanical Qm resulting from different surface treatments (as we will see in Section 4.3)

suggests that the surface quality of the device plays a significant but difficult to model role in



42

G1 [56, 57] G2 [59, 60] 5G [52] 5GHF [101]
ωm/2π 10 MHz 2 GHz 4.2 GHz 5.7 GHz
Qo 104−105 4× 104 1.1× 106 1.2× 106

Qm
102 (air)

103 (vacuum)
103 (air)

104 (10 K)
3× 103 (air)

1.1× 105 (20 K)
3× 103 (air)

6.8× 105 (10 K)
fm ·Qm 1010 1013 3.9× 1014 3.5× 1015

|g|/2π (meas.) 600 kHz 220 kHz 900 kHz 1.05 MHz
|g|/2π – 150 kHz 500 kHz 780 kHz
gmb/2π – −380 kHz −400 kHz −90 kHz
gpe/2π – 530 kHz 900 kHz 870 kHz
meff 40 pg 330 fg 311 fg 127 fg
xzpf 5.1 fm 3.4 fm 2.7 fm 3.4 fm

Table 3.2: Summary of device designs. Summary of device designs and associated backaction
cooling related parameters listed in chronological order (from left to right). All values are simulation
values except for |g|/2π (meas.), Qo, Qm, and fm ·Qm where we have listed the highest experimen-
tally realized value at room temperature and pressure (unless otherwise indicated). Optical mode
frequencies, ωo/2π, for all devices are nominally 1.94 THz (free space wavelength of 1550 nm).

mechanical losses. In terms of engineering device geometry, the best we can currently do then is

mitigate clamping losses as much as possible with the use of phononic shields, and take careful steps

during fabrication to prepare the device surface.

3.5 Nanobeam Designs

Summarized in Table 3.2 are the nanobeam devices designed in the Painter group in the last several

years, with associated backaction cooling parameter values. The optimization technique discuss

above was applied to designing 5G (accounting only for gmb) and 5GHF devices (accounting for

both gmb and gpe), seeing a significant improvement on G2 nanobeam device parameters, designed

by heuristic parameter space searching.

One feature of note is that gmb and gpe have opposing signs for the chosen pair of optical and

mechanical modes. Running the optimization procedure results in a solution that minimizes the

magnitude of one and maximizes the magnitude of other, and suggests that they cannot be made

to add for the selected pair of modes. A pair of modes where these optomechanical couplings are of

the same sign then, may have drastically improved SNR and cooling efficiency, both scaling as the

square of g (from (2.64) and (2.57)).

In Chapter 4 and Chapter 5 we focus on the 5G design (5GHF was developed after the ground

state cooling experiment). FEM simulations for this design are summarized in Figure 3.10.
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Figure 3.10: FEM simulations of the 5G design. FEM simulations corresponding to the nor-
malized a, Ey field of the fundamental optical mode, b, displacement field, |Q|/max{|Q|}, of the
fundamental breathing mode, c, surface integrand in (3.39), showing the individual contributions to
gmb, and d, volume integrand in (3.47), showing the individual contributions to gpe.
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Chapter 4

Fabrication

In both the Painter group and the scientific community at large, a significant amount of effort has

been spent developing silicon processing techniques and determining the role of surface chemistry in

maintaining high quality factor optics and mechanics [66, 67, 102–104]. As such, we will only briefly

discuss the procedure for fabricating 5G devices.

4.1 Lab Procedure

The basic fabrication steps for 5G devices are enumerated here (summarized in Figure 4.1). Fig-

ure 4.2 shows scanning electron microscope (SEM) images of a typical 5G device ready for optical

and mechanical characterization.

1. The nanobeams are fabricated using a silicon-on-insulator (SOI) wafer from SOITEC (resis-

tivity, ρ, of 4−20 Ω · cm, device layer thickness, t, of 220 nm, (100) crystal orientation, and

buried-oxide layer thickness of 3 µm). Typically, we work with diced chips either 1 cm ×

1 cm or 1 cm × 0.5 cm in size which we initially clean with a solvent rinse train ordered by

decreasing molecular weight: trichloroethylene (C2HCl3, abbreviated TCE), acetone (C3H6O),

ethanol (C2H6O), then finally, deionized (DI) water (H2O).

2. A resist layer of ZEP-520A is spun onto the chip (5,000 rpm, 60 s) and then baked (180◦C,

20 minutes).

3. The cavity geometry is defined by electron beam lithography, then developed using ZED-N50

(150 s) and rinsed with ZMD-D (20 s).

4. We use inductively-coupled-plasma reactive ion etching (ICP-RIE) to transfer the pattern

through the 220 nm silicon device layer.

5. The resist layer is removed using a heated TCE solution (50◦C, stirred at 250 rpm) and a

solvent rinse, followed by a Piranha clean (600 s, stirred at 250 rpm). The latter is prepared
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Resist Layer
(ZEP-520A)

Electron Beam
Lithography

Develop & Rinse
(ZED-N50 & ZMD-D)

Plasma Etch
(C4F8/SF6)

Piranha Clean
(H2SO4/H2O2) HF Undercut

Figure 4.1: Silicon-on-insulator device fabrication. Diagrammatic representation of the 5G
device fabrication procedure.

by combining sulfuric acid (H2SO4) and hydrogen peroxide (H2O2) in a 3:1 ratio at 75◦C, and

is finished with a DI water bath (30 s × 2).

6. The buried oxide layer is removed using a 1:1 hydrofluoric acid (HF) to DI water (H2O) solution

(90 s), followed by a DI water bath (30 s × 2).

7. The device surface is prepared by performing a Piranha clean (600 s, stirred at 250 rpm),

followed by hydrogen termination using a weak 1:20 HF:H2O solution (60 s) and a final DI

water bath (30 s × 2). This is repeated as many times as necessary.

4.2 Lithography Adjustments

In the fabrication procedure, there are three different sets of feature dimensions:

� the designed (and desired) dimensions.

� the lithographic dimensions. These are the dimensions defined in the lithography pattern.

Typically the beam widths are wider and the holes are smaller to account for blowout effects

from the fabrication procedure.

� the realized dimensions. These are the dimensions of the fabricated nanobeam, and do not

always match the desired dimensions.

A lithography pattern defined with the same feature dimensions as the nanobeam design tends to

produce holes that are slightly larger than desired and a beam width that is slightly thinner than

desired. We adjust the lithographic feature dimensions by utilizing MATLAB’s image processing
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a

b c

5 µm

1 µm1 µm

Figure 4.2: Scanning electron microscope image of a 5G device. a, Wide, angled view of
a 5G device showing a suspended silicon nanobeam surrounded by a phononic shield to mitigate
clamping losses. The lighter region around the crosses is the undercutting of the buried oxide layer.
b, A zoomed view of the nanobeam cavity region. c, A zoomed view of the phononic shield region.
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Figure 4.3: Lithography parameter adjustment. a, A scanning electron microscope (SEM) im-
age of a fabricated 5G nanobeam with MATLAB measured feature dimensions overlayed. b–d, The
measured hx, hy, and w feature dimensions plotted against the desired (black �’s) and lithographic
(blue #’s) feature dimensions. The red line is the mapping between the realized dimensions and the
lithographic feature dimensions, and the black line shows how close the realized dimensions are to
the correct sizes. We see that this particular nanobeam is nearly ideal.

functions to analyze scanning electron microscope (SEM) images of the fabricated nanobeams (Fig-

ure 4.3a), producing a mapping between the lithographic feature dimensions and the realized feature

dimensions. Inverting this function (Figure 4.3b–d) and inputting the desired feature dimensions

should then yield a lithography pattern that results in fabricated nanobeams of the correct size. In

practice, if the ICP-RIE is stable, one or two iterations of this procedure is sufficient.

4.3 Silicon Surface Passivation

The surface chemistry of silicon plays a large role in limiting both the optical and mechanical quality

factor of microscale devices through nonlinear absorption processes (via two-photon absorption and

free carrier absorption, proportional to free carrier lifetime [67, 105–108]) and scattering losses (via

surface roughness [66, 67]). This is especially true in nanobeams, given the large surface-to-volume

ratio due to the patterning and elongated aspect ratio.

The final step in the procedure above was originally chosen since Piranha/HF cycles have been

shown to significantly decrease free carrier lifetimes, as well as smoothing the surface and eliminating
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Surface Treatment Qo (air) Qm (air) Qo (cryo) Qm (cryo)
O2 + N2 Anneal (∼10 nm SiO2) 900,000 1,600 550,000 2,600
O2 + N2 Anneal (<1 nm SiO2) 800,000 2,400 600,000 7,200
N2 Anneal 750,000 3,700 500,000 140,000
HF Dip 1,100,000 3,300 660,000 160,000

Table 4.1: Summary of surface treatments. Impact of various surface treatments on quality
factor at room temperature and pressure, and for cryogenic conditions. Listed optical quality factors
measure intrinsic loss. The N2 anneals were performed at 1,000◦C and 1 atm, for 3 hours with
1 ramp down (following [67]). The growth rate of amorphous silicon oxide is estimated for dry
oxygen annealing at 1,000◦C and 1 atm using [115].

defects by repeatedly removing monolayers from the surface [109]. While effective at room tempera-

ture and pressure, the process does not prevent native oxide growth [110] and is not stable over time.

Furthermore, accelerated degradation is observed during the transition to vacuum (<3×10−7 mbar)

and cryogenic conditions (<30 K).

Alternative surface treatments following [109] were explored to mitigate this, with results shown

in Table 4.1. The dry oxygen anneal, designed to improve surface stability, resulted in drastically

decreased mechanical quality factors, likely related to two level systems (TLS) [111, 112] and anhar-

monicity [113] present in amorphous materials. Plain nitrogen annealing has been shown to reduce

surface scattering due to roughness in proportion to the annealing time [114] (and the measured

quality factors reflect this), but resulted in unstable fluctuations in both the mechanical and optical

mode at cryogenic conditions that were difficult to explain. In the end, the most effective solution

was to perform a 1:20 HF:H2O dip for 60 s immediately (or as soon as possible) before cooling,

which presumably maximizes the “protective” effect of the hydrogen termination.



49

Chapter 5

Ground State Cooling

With the theoretical framework and device design methodology developed in the previous sections,

we now focus on the experimental procedure for backaction cooling the mechanical breathing mode

of a 5G device to below unity phonon occupation. From (3.1), it is clear that precooling the device is

immensely helpful in achieving this. Making use of a continuous flow, liquid helium (LHe) cryostat,

we can bring the initial phonon population down to ∼102 (instead of ∼103 at room temperature). In

cryogenic conditions, the device can be characterized to infer the values of κ, κe, and γi. With careful

calibration of the laser power arriving at the optical cavity, the optomechanical coupling rate, g, can

be inferred in two ways: via the broadening of the transparency window in the electromagnetically

induced transparency (EIT) reflection spectroscopy, and via the broadening of the mechanical mode

peak in the power spectral density (PSD) of the optical signal amplitude measured on a high speed

detector connected to a real-time spectrum analyzer (RSA). Calibration of the optical and electronic

gains of the components after the optical cavity also allows the phonon occupation, n̄, of the me-

chanical mode to be extracted from the RSA trace—mechanical mode thermometry. Maintaining a

laser frequency detuning, ∆, from the optical cavity mode of a mechanical frequency, ωm, we then

slowly increase the drive power while monitoring n̄ until it is below unity, indicating the mechanical

mode is spending most of its time (>50%) in the quantum ground state. The proceeding detailed

discussion of this experiment is adapted from [52].

5.1 Experimental Setup

The detailed experimental setup used to measure the cooling spectra and the electromagnetically-

induced transparency (EIT) window of the optomechanical crystal (OMC) is shown in Figure 5.1.

A detailed listing of equipment and related model numbers is shown in Appendix D.1. The setup

is designed measure both the EIT-like reflected signal and the transmission signal of the laser used

to cool the mechanical system (though not simultaneously). It can also be configured via the

optical switches (SWn, with control circuit described in Appendix D.2) for calibration and device
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Figure 5.1: Detailed experimental setup. Full backaction cooling setup including switched
optical paths (via optical switches, SWn). Blue lines indicate the optical path for the cooling
measurement (“0” position of the optical switches), while the dashed black lines indicate alternative
switched paths for calibration and characterization (the “1” position of the optical switches). The
red lines indicate low-frequency (<1 MHz) electrical signals and the red–white lines indicate high-
frequency (>1 GHz) electrical signals. A detailed explanation of the setup can be found in the text.
The equipment key can be found in Table D.1.

characterization.

As a coherent light source we use a fiber-coupled, near-infrared laser, tunable across a wave-

length range spanning approximately 50 nm centered around 1,545 nm, which has its intensity

controlled by a variable optical attenuator (VOA). A small percentage (10%) of the laser intensity

is sent to a wavemeter (λ-Meter) for passive frequency stabilization of the laser (frequency/detuning

stabilization is outlined in Appendix D.4). A fiber polarization controller (FPC) is placed before

the electro-optic amplitude modulator (EOM) to minimize polarization dependent losses. The am-

plitude modulator is driven by a microwave source (RF-SG) that generates a high-frequency RF

signal. The RF signal itself is composed of an amplitude modulated carrier of frequency ∆p, swept

between 1 GHz and 8 GHz, modulated at the detection frequency of the lock-in amplifier (LI), ωLI

(∼100 kHz). As a result, the amplitude modulation produces two probe sidebands at ω`±∆p, each

with a small amplitude modulation at the lock-in frequency.

A small portion of the signal from the amplitude modulator output (10%) is used as a DC

control signal to keep the laser power constant, compensating for any low-frequency drift during the

experiment. The remaining laser light is passed through a circulator, a 2× 2 switch (SW1) (used to

control the direction of the laser light through the device region), and a fiber polarization controller

(FPC). The optical fiber then physically goes into a continuous flow, LHe cryostat, where it is fusion

spliced [116] to a tapered and dimpled optical fiber (Taper) which has its position controlled with

nanometer-scale precision (see Appendix D.5 for details of the Janis cryostat and related internal

components). Coupling to the optomechanical crystal device is accomplished via the evanescent field
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of this fiber probe [69, 70] (see Appendix D.6).

Switches 2 and 3 (SW2 and SW3) determine which path the light transmitted through the

taper will follows. In the normal configuration (denoted by the solid blue path in Figure 5.1), the

transmitted light is optically amplified by an erbium-doped fiber amplifier (EDFA) and then detected

by a high-speed photodetector (D2) which is connected to a real-time spectrum analyzer (RSA) for

spectral analysis. This optical amplification ensures the measured signal is above both the detector

and RSA electronic noise floor. The alternative position of SW2 is used to calibrate the optical gain

of the EDFA, and the nanosecond photodetector (D3) is used to measured the DC transmission

response of the cavity. Additionally, the transmitted power is measured via a power meter (PM).

Any reflected signal coming from the taper/device is detected by a high-gain photodetector (D1)

and its signal is sent to a lock-in amplifier (LI). The in-phase and quadrature signals from the lock-in

are recorded for EIT reflection spectroscopy.

5.2 EIT Measurements

Here we will show how the amplitude modulation of the sidebands at ω`±∆p is used to measure an

EIT-like reflected signal from the cavity. Using the model of an electro-optic amplitude modulator

from Appendix D.3, the output field amplitude of the EOM can be written as

aout(t) =
ain(t)

2

(
(1± i)∓ β cos(∆pt)

(
1 +mLI cos(ωLIt)

))
=
ain(t)

2

(
(1± i)∓ β

2

(
cos(∆pt) +

1

2
cos((∆p + ωLI)t) +

1

2
cos((∆p − ωLI)t)

))
, (5.1)

where ain(t) = α0 =
√
PEOM/~ω` is the input field amplitude to the EOM in a frame rotating at

ω`, PEOM is the input power to the EOM, β is the EOM modulation index (typically � 1), and ωLI

and mLI are, respectively, the frequency and amplitude modulation index on the RF signal at ∆p.

For this experiment, we set mLI = 1 and ωLI � ∆p. The reflected signal is filtered by the cavity

dispersion. Considering the case where the pump is on the red side of the cavity (∆ > 0) in the

large detuning limit, and using the previously derived response functions of the cavity, (2.29) and

(2.39), with the relation r(ω) = 1− t(ω), the reflected field is

arefl = r(∆)
α0

2
(1± i)∓ r+(∆p)

α0β

8

(
e−i∆pt +

1

2
e−i(∆p+ωLI)t +

1

2
e−i(∆p−ωLI)t

)
, (5.2)

where we have assumed that r+(ω) is approximately constant over ∆p ± ωLI (true for ωLI < (γi +

γOM)/2). The power incident on D1 in Figure 5.1 is thus

|arefl|2 ∝ D.C. + |r+(∆p)|2
α2

0β
2

32

(
cos(ωLIt) +

1

2
cos(2ωLIt)

)
+O(ei∆pt), (5.3)



52

where we have ignored terms with frequency components � ωLI that are outside the detector

bandwidth. The lock-in amplifier measures the in-phase (X) and quadrature (Y ) components of the

photodetector signal oscillating at ωLI, so we have

X ∝ |r+(∆p)|2 cosφ, (5.4)

Y ∝ |r+(∆p)|2 sinφ, (5.5)

where φ is the phase difference between the photodetector signal and the reference oscillator in the

lock-in amplifier. Adding X and Y in quadrature yields a signal amplitude R(∆p) ∝ |r+(∆p)|2.

For this experiment, we will see that the relevant information in the reflected signal is amplitude

independent, so we are not too concerned with the proportionality constants.

If we vary ∆p, we can identify two regimes of R(∆p): the “wide” regime where |∆p − ωm| > γ,

and the “narrow” regime where |∆p − ωm| . γ. In the wide regime, we have

R(∆p) ∝
(κe/2)2

(∆−∆p)2 + (κ/2)2
, (5.6)

which is simply the steady state cavity frequency response, a Lorentzian signal from which we can

extract both κ and the detuning of the laser from the optical cavity. In the narrow regime, if we

assume ∆ = ωm (that is, we are a mechanical frequency detuned, on the red side of the cavity),

then in the sideband-resolved regime, we have

i(∆−∆p) + κ/2 = i(ωm −∆p) + κ/2

≈ κ/2, (5.7)

so the lock-in amplifier signal is given by

R(∆p) ∝
κ2
e

κ2

(ωm −∆p)
2 + (γi/2)2

(ωm −∆p)2 +
(
γi+γOM

2

)2 ,
=
κ2
e

κ2

(
1− γOM

2

γi + γOM/2

(ωm −∆p)2 +
(
γi+γOM

2

)2
)
, (5.8)

where we have substituted |G|2 = κγOM/4 and used (A.23). This quantitatively describes the

EIT transparency window induced by the interaction of the optical field with the mechanics, and is

spectrally an inverted Lorentzian of width γ = γi+γOM with vanishing resonant reflection in the large

cooperativity limit. We must note, however, that the previous assumption that ωLI < (γi + γOM)/2

limits the smallest transparency window that can be measure to approximately the lock-in detection

frequency. A detailed discussion of EIT induced by optomechanics can be found in [117, 118].
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5.3 Mechanical Mode Thermometry

Equation (2.64) shows an explicit form for the spectral power in the mechanical sideband for a

red-detuned pump laser, as seen by a perfect photodetector placed immediately at the output port

of the optical cavity. If the input power to the cavity, Pin, and the device parameters γi, κ, and κe

were accurately known, such a measurement would allow the mechanical mode occupation, n̄, to be

inferred. In reality, photodetectors are neither perfect, nor so conveniently placed. More usefully,

we can use this equation to relate the mechanical mode occupation to the measured power spectrum

on the RSA in the experimental setup.

The signal analyzed by the RSA, PRSA, is related to the photodetector (D2) output voltage, VD2,

by the electrical power relationship PRSA = V 2
D2/RL, where RL = 50 Ω is the input impedance of

the RSA. This voltage is related to the incident optical power by some detector gain, GD2. This is

then related to the power at the output port of the optical cavity by some system gain, which we

can separate into gain provided by the EDFA, GEDFA, and system losses, Go. Grouping the system

losses together with the detector gain into a single, electronic gain term, Ge ≡ GD2Go (with units

of volts per optical watt), we can relate the RSA-measured spectral power, ˜̄SP , to (2.64) through

˜̄SP (ω) =
G2
eG

2
EDFA

RL
S̄P (ω). (5.9)

For ∆ = ωm, integrating this expression, and defining P̃ωm as the integrated power spectral density

near ωm of the RSA-measured signal, and

Pωm =
(
~ω`|αin|2

)( κe/2

∆2 + (κ/2)2
~ω`|αin|2

)(
4g2

κ

)(κe
κ

)
n̄, (5.10)

as the average oscillating optical power close to ωm (at the cavity), we get the relation

P̃ωm =

(
G2
eG

2
EDFA

RL

)(
~ω`|αin|2

)( κe/2

∆2 + (κ/2)2
~ω`|αin|2

)(
4g2

κ

)(κe
κ

)
n̄, (5.11)

where we have subtracted off the flat background signal in S̄P (ω). Defined αin =
√
nin =

√
Pin/~ω`,

where Pin and nin are respectively the input power and input photon flux to the optical cavity, and

recalling that |G|2 = g2nc = κγOM/4 = κ(γ− γi)/4 for ∆ = ωm in the sideband-resolved regime, we

can then write the expression for the mechanical mode occupation in terms of all directly measurable

values,

n̄ = P̃ωm

(
RL

G2
eG

2
EDFA

)(
1

Pin

)(
1

~ωo

)(
1

γ − γi

)(
κ

κe

)
. (5.12)
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From (2.57), we can use the phonon number to get the bath temperature,

Tb =
~ωm

kB log
(
γi
γn̄ + 1

) . (5.13)

To check the validity of this analysis, repeated measurements at room temperature were performed,

yielding a measured Tb of ∼296± 8 K.

5.3.1 Calibration of Input Power

While the input/output optical power of the taper can be measured directly, the cavity input power,

Pin, is additionally influenced by asymmetric losses in the taper resulting from coupling geometry.

With this in mind, the 2 × 2 switch SW1 allows these losses to be characterized by switching the

direction of the light through the taper. Labeling the two positions of the switch “0” and “1”, the

input powers to SW1, respectively P0 and P1, and the total insertion loss, Ltotal, can be measured

directly. Optical transmission scans are then taken in both switch positions at high enough powers

to induce optical bistability [68]. Given that the bistability shift of the optical mode, ∆λ0 and ∆λ1

for the two directions respectively, is proportional to the intracavity power, we have

P0L0

P1L1
=
Pin,0

Pin,1
=

∆λ0

∆λ1
, (5.14)

where L0 and L1 are the losses before the cavity, and Pin,0 and Pin,1 are the powers at the cavity, in

the respective switch positions. Since L0L1 = Ltotal, we can solve this system of equations and find

L0 =

√
P1∆λ0

P0∆λ1
Ltotal, (5.15)

L1 =

√
P0∆λ1

P1∆λ0
Ltotal. (5.16)

Thus, Pin,0 and Pin,1 can be determined for a fixed attenuation. During the measurement, the

direction of the light through the taper is fixed so we choose one of the two to set as Pin. The

linearity of the VOA then allows the power at the cavity to be inferred for any attenuation setting.

5.3.2 Calibration of EDFA Gain

The EDFA gain, GEDFA, is measured by utilizing SW2 to insert and remove the EDFA from the

optical train while measuring a fixed tone at the mechanical frequency, ωm, generated by the EOM.

The ratio of the integrated spectral power of the tones gives G2
EDFA.



55

5.3.3 Calibration of Electronic Gain

To characterize the electronic gain, Ge, of detector D2, we first maximize the power incident on the

detector (by reducing the attenuation on the VOA). We then measure the DC bias voltage V
(0)
DC

(via the bias monitor port on D2) and verify that this voltage is identical to the DC voltage at the

high-frequency port on D2, ensuring that V
(0)
DC accurately reflects the DC voltage measured by the

RSA. Then, using switch SW3, the optical power incident on D3, P
(0)
D3 , was also measured. For each

data point in the experiment (corresponding to a different attenuation), we measure the incident

power on D3, PD3. We have then

VDC = V
(0)
DC

PD3

P
(0)
D3

. (5.17)

The purpose of the switching is a technical one; the dynamic range of our optical power meter is much

larger than that of our voltmeter, allowing the DC bias voltage of the detector to be determined for

any amplitude of optical signal. Since (2.64) is computed for optical power at the cavity, Ge must

reflect the conversion of power at the cavity, Pin, to voltage at the detector, VDC. We must have

then Ge = VDC/Pin (for VDC and Pin measured at the same attenuation). We note that this is not

the gain typically quoted on a specification sheet; it encapsulates the optical insertion loss between

the cavity and the detector in our experimental setup.

5.3.4 Optical Characterization

The normalized DC transmission spectra at detector D3, T (ω), is given by the squared magnitude

of the cavity frequency response in (2.29),

T (ω) =

∣∣∣∣1− κe/2

−i(ωo − ω) + κ/2

∣∣∣∣2
=

(ωo − ω)2 + (κ/2− κe/2)2

(ωo − ω)2 + (κ/2)2
, (5.18)

effectively a Lorentzian dip with a linewidth of κ and a normalized transmission on resonance (at

ω = ωo),

T0 ≡ T (0) =
(

1− κe
κ

)2

. (5.19)

The transmission contrast is given by 1−T0. The optical parameters κ, κe, and ωo can be determined

by least squares fitting the measured normalized DC transmission spectra to the above functional

form. We can also use EIT reflection spectra in the wide regime and (5.6) to determine κ.
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5.3.5 Mechanical Characterization

The measured power spectral density on the RSA near ωm, ˜̄SP (ω), has a functional form given by

(2.64). We can write this as

˜̄SP (ω) =
A(

ωm−ω
γ/2

)2

+ 1
, (5.20)

effectively a Lorentzian centered at ωm, with a linewidth of γ, and amplitude A, where we have

subtracted a spectral background taken with the cooling laser far-detuned from the cavity (with all

other experimental conditions constant). The mechanical parameters, γ and ωm, can be determined

by least squares fitting. We can also use EIT reflection spectra in the narrow regime and (5.8) to

determine both γ and ωm when γ > ωLI. We can compute the average oscillating power at ωm,

P̃ωm , using a modified form of (A.22),

P̃ωm =
Aγ

4
. (5.21)

To extract the intrinsic mechanical linewidth, γi, we first fix the input power Pin. We then lock the

pump on the red side of the cavity (at ∆ = +ωm) and measure the total linewidth, γ(red) = γi+γOM.

We repeat the measurement on the blue side (at ∆ = −ωm) with all other experimental conditions

constant, where γ(blue) = γi − γOM. Using low input powers where γOM � γi to avoid amplification

of the mechanical oscillations, we have

γi =
γ(red) + γ(blue)

2
. (5.22)

5.3.6 Optomechanical Coupling Rate Characterization

For a fixed detuning ∆ = ωm, we can measure γOM as a function of Pin using either (5.21) or (5.8)

(once γi is known). These two parameters are related by

γOM =
4g2

κ
nc

=

(
κe/2

ω2
m + (κ/2)2

1

~ω`
4g2

κ

)
Pin, (5.23)

where the optomechanical coupling rate, g, can be extracted from the slope.
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Figure 5.2: Mechanical mode thermometry. Plot of the measured (#) mechanical mode bath
temperature (Tb) versus cryostat sample mount temperature (Tc). The dashed line indicates the
curve corresponding to perfect following of the mode temperature with the cryostat temperature
(Tb = Tc). We see a saturation of the sample temperature at 17.6 K.

5.4 Results

5.4.1 Bath Temperature Characterization

As discussed in Section 5.3, the calibration of the EDFA gain, along with the photoreceiver and

real-time spectrum analyzer photodetection gain, allows one to convert the measured area under the

photocurrent noise PSD into a mechanical mode phonon occupancy. These calibrations, along with

low drive power measurements (C � 1) of both optical and RF spectra at ∆ = ±ωm detunings,

provide an accurate, local thermometry of the optomechanical cavity. An application of this form of

calibrated mode thermometry is shown in Figure 5.2, where we plot the optically measured mechan-

ical mode bath temperature (Tb) versus the cryostat sample mount temperature (Tc; independently

measured using a Si diode thermometer attached to the copper sample mount). As one can see from

this plot, the optical mode thermometry predicts a mode temperature in good correspondence with

the absolute temperature of the sample mount for Tc > 50 K; below this value the mode temperature

deviates from Tc and saturates to a value of Tb = 17.6±0.8 K due to blackbody heating of the device

through the imaging aperture in the radiation shield of our cryostat.

5.4.2 Device Characterization

In a first set of measurements under stabilized vacuum (<3×10−7 mbar) and cryogenic (Tb = 17.6 K)

conditions, we follow Section 5.3.4 and 5.3.5 to measure the mechanical and optical properties of the

system. The optical resonance was found to have Qo = 4× 105, ωo/2π = 195 THz (λo = 1,537 nm),

and resonant transmission contrast of 25%. This corresponds to κ/2π = 488 MHz and κe/2π =

65 MHz. The mechanical mode was found to have Qm = 1.06× 105 and ωm/2π = 3.68 GHz. This
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Figure 5.3: Device characterization. a, The normalized optical transmission spectrum measured
on D3 from which κ, κe, and ωo are extracted. b, The mechanical noise spectrum measured around
the resonance frequency of the breathing mode, ωm, at low laser drive power (nc = 1.4), for ∆ = +ωm
(red) and ∆ = −ωm (blue), from which γi can be inferred. The black trace corresponds to the
measured noise floor (dominated by EDFA noise) with the drive laser detuned far from the cavity
resonance.

corresponds to γi/2π = 35 kHz. The data for these measurements is presented in Figure 5.3. Typical

measured noise power spectra under low power laser drive (nc = 1.4, C = 0.27), for both red and

blue detuning, are shown in Figure 5.3b. Even at these small drive powers the effects of backaction

are clearly evident on the measured spectra, with the red-detuned drive broadening the mechanical

line and the blue-detuned drive narrowing the line. The noise floor in Figure 5.3b (shaded in gray)

corresponds to the noise generated by the erbium-doped fiber amplifier (EDFA) used to preamplify

the transmitted drive laser signal prior to photodetection, and is several orders of magnitude above

the electronic noise of the photoreceiver and real-time spectrum analyzer.

5.4.3 Backaction Cooling

In a second set of measurements, the mechanical damping, γ, and the cavity–laser detuning, ∆,

can be measured by optical spectroscopy of the driven cavity. By sweeping a second probe beam of

frequency ωp = ω`+ ∆p over the cavity, with the cooling beam tuned to ∆ = ωm, spectra exhibiting

electromagnetically induced transparency (EIT) [117] are measured (shown in Figure 5.4b–d). Due

to the high single-photon cooperativity in the system, an intracavity population of only nc ≈ 5

switches the system from reflecting to transmitting for the probe beam. The corresponding dip

at the center of the optical cavity resonance occurs at a probe detuning ∆p ≡ ωp − ω` = ωm

and has a bandwidth equal to the mechanical damping rate, γ = γi(1 + C). Figure 5.4a shows

a plot of the measured mechanical linewidth versus intracavity photon number, displaying good

correspondence between both mechanical and optical spectroscopy techniques, and indicating that

the system remains in the weak-coupling regime for all measured cooling powers. From a fit to the

measured mechanical damping rate versus nc (dashed red line in Figure 5.4a), the zero-point-motion

optomechanical coupling rate is determined to be g/2π = 910 kHz.
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Figure 5.4: EIT and optomechanical damping. a, Measured mechanical mode linewidth (�)
and EIT transparency bandwidth (#) (showing good correspondence, as expected), with a linear
fit to γOM (red dashed line) to estimate the zero-point optomechanical coupling rate, g. b, Typical
reflection spectrum of the cavity (normalized power reflection) while driven by the cooling laser
(∆ = ωm, nc = 56, C = 11) as measured by a weaker probe beam at ωp = ω` + ∆p. The signature
reflection dip on-resonance with the bare cavity mode is indicative of electromagnetically-induced
transparency (EIT) caused by the coupling of the optical and mechanical degrees of freedom by the
cooling laser beam. c, Zoomed view of the EIT transparency window region in b. d, Transparency
window for the highest intracavity photon number, nc ≈ 2,000, with a transparency bandwidth of
15 MHz.

In Figure 5.5a we plot the calibrated Lorentzian noise PSD area, in units of phonon occupancy,

versus red-detuned (∆ = ωm) drive laser power. Due to the low effective temperature of the

laser drive, the mechanical mode is not only damped but also cooled substantially. The minimum

measured mode occupancy for the highest drive power of nc ≈ 2,000 is n̄ = 0.85 ± 0.08, putting

the mechanical oscillator in a thermal state with ground state occupancy probability greater than

50%. The dashed blue line in Figure 5.5a represents the ideal backaction cooled phonon occupancy

estimated using both the measured mechanical damping rate in Figure 5.4a and the low drive power

intrinsic mechanical damping rate. Deviation of the measured phonon occupancy from the ideal

cooling model is seen to occur at the highest drive powers, and as detailed in Section 5.5, is due to

both an increase in the bath temperature due to optical absorption (Figure 5.5d) and an increase in

the intrinsic mechanical damping rate (Figure 5.5e) induced by the generation of free carriers through

optical absorption. In order to evaluate the efficiency of the optical transduction of the mechanical

motion, we also plot in Figure 5.5f the measured background noise PSD, or imprecision level. The

minimum imprecision of our measurements (at nc ∼ 500) corresponds to nimp ≈ 20 in units of

phonon quanta when referred to the peak Lorentzian level of the transduced mechanical motion
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Figure 5.5: Optical cooling results. a, Measured (#) average phonon number, n̄, in the breathing
mechanical mode at ωm/2π = 3.68 GHz versus cooling laser drive power (in units of intracavity
photons, nc), as deduced from the calibrated area under the Lorentzian lineshape of the mechanical

noise power spectrum, ˜̄SP . The dashed blue line indicates the estimated mode phonon number
from the measured optical damping alone. Error bars indicate estimated uncertainties as outlined in
Section 5.4.4. b and c, The measured noise power spectrum in units of m2/Hz (using xzpf = 2.7 fm,
corresponding to the numerically computed motional mass for the breathing mode of meff = 311 fg)
at low and high laser cooling power, respectively. d, Estimated bath temperature, Tb, versus cooling
laser intracavity photon number, nc. e, Measured change in the intrinsic mechanical damping rate
versus nc (#). A polynomial fit to the mechanical damping dependence on nc is shown as a dashed
line. For more detail see Section 5.5. f, The measured (�) background noise PSD versus laser drive
power (nc), in units of effective phonon quanta. The plotted red dashed curve corresponds to the
theoretical imprecision assuming shot-noise-limited detection, but all other cavity properties and
optical loss as in the experiment. The solid black curve is for an ideal, quantum-limited continuous
position measurement of mechanical motion.

(see Section 5.7). Comparing the measured imprecision to the theoretical imprecision for shot-noise-

limited detection (dashed red curve) and ideal quantum-limited motion transduction (black curve),

indicates that nEDFA
imp ≈ 15 stems from the excess noise imparted by the EDFA optical amplifier, the

remaining nloss
imp ≈ 5 imprecision quanta being due to optical loss of signal inside the cavity (11.7 dB)

and in the optical fiber output waveguide (2.2 dB).
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5.4.4 Error Analysis

We can calculate the cumulative error for the measured intracavity phonon number using (5.12) and

statistics on the set of measurable parameters, giving

∆n̄

n̄
=

(
δω2

o

ω2
o

+
δκ2
e

κ2
e

+
δP 2

in

P 2
in

+
δP̃ωm

2

P̃ωm
2 +

δγ2
i

(γ − γi)2
+

δγ2

(γ − γi)2

+

(
κ/2

(κ/2)2 + (∆− ωm)2
− 1

κ

)2

δκ2 +

(
2(∆− ωm)

(κ/2)2 + (∆− ωm)2

)2

δ∆2

+

(
2(∆− ωm)

(κ/2)2 + (∆− ωm)2

)2

δω2
m

)1/2

. (5.24)

Here we neglected the error on Ge and GEDFA which are much smaller than any other error quantity.

To determine the variation in κ, κe, and ω0, we measured the DC optical spectrum for every single

data point in Figure 5.5 and determined δκ, δκe, and δωo from the normalized standard deviations

of each of the values. The measurement uncertainty of these values is below 0.7%. The uncertainty

in the mechanical properties, δγ, δP̃ωm , and δωm, was determined from the deviation on the spectra

fits using a 95% confidence interval, which produces percent errors below 0.6%. The pump laser

detuning from the cavity is controlled by the EIT reflection spectra. To find the variation of the

detuning, δ∆, we once again computed the standard deviation of all the measured detunings, which

results in a deviation of less than 0.3%.

The two main sources of error in our data are the determination of the intrinsic mechanical quality

factor (reflected in γi) and the input power, Pin. The uncertainty in the mechanical linewidth, δγi,

is found by repeatedly measuring it at a single power level and computing its standard deviation

(found to be ∼1.6%). Using the calibration procedure discussed in Section 5.3.1 for Pin, the error

lies in the determination of losses L0 and L1. In the worst case the calibration would be off by the

ratio between the input loss, L0 in the present experiment, and the square root of total loss
√
L0L1

producing a percentage error of ∼4.0% to the input power.

Taking all of these factors into account, as well as the optical noise discussed in Section 5.6.1,

we find an overall uncertainty of ∼9% in the measured absolute phonon number at the maximum

cooling point.

5.5 Modifications to Intrinsic Mechanical Damping

5.5.1 Temperature Dependence

Absorption in the dielectric cavity causes the temperature of the cavity to increase locally. This effect

is expressed through shifts in the refractive index of the structure, and the thermo-optic coefficient
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Figure 5.6: Thermo-optic effects. a, The measured wavelength shift compared to the theoretical
shift predicted by (5.26) for a range of cavity temperatures, using 17.6 K as the reference point. b,
The measured power-dependent wavelength shift of the cavity with fitted individual contributions
due to free carrier dispersion (blue) and refractive index change (red), as well as their sum (black),
for the two bounds discussed in the text.

of silicon [119]. As such, we can estimate the temperature of the cavity by looking at the shift in

the cavity frequency, starting from a known temperature.

Equation (3.27), the first-order perturbation formula for dielectric cavities, in the slightly recast

form,

∆ωo
ωo
≈ ∆λo

λo
≈ −1

2

´
dx δε(x)|E(x)|2´
dx ε(x)|E(x)|2

, (5.25)

is starting point of this analysis. For the temperature dependent index of refraction, n(T ), we have

the relation ε/ε0 = n2, so we find δε = 2nδnε0. Defining T0 as the uniform initial temperature of

the cavity and assuming the perturbed cavity temperature, T , is also uniform, (5.25) can be written

∆λo
λo
≈ −

´
Si
dx |E(x)|2´

dxn(x, T0)2|E(x)|2
nSi(T0)∆nSi, (5.26)

where the volume integral in the numerator is only over the dielectric and ∆nSi = nSi(T )−nSi(T0)�

1 is the change in the index of refraction of the dielectric between T and T0. Using the values of

n(T ) for silicon found in literature [119], and a value of

´
Si
dx |E(x)|2´

dxn(x, T0)2|E(x)|2
≈ 7.5066× 10−2

calculated from the finite element simulations (FEM) of the optical mode profiles for an initial

temperature of T0 = 300 K, we plot the wavelength shift from 17.6 K up to 300 K in Figure 5.6a.

The total shift of 12.0 nm agrees with the experimentally observed change in resonance wavelength.
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Figure 5.7: Temperature-dependent loss. a, The measured intrinsic mechanical quality factor
for various cavity temperatures. b, The inferred intrinsic mechanical loss rate due to temperature,
γi,T , modeled by a 4th-order polynomial fit.

This analysis can be applied to the wavelength shift data for various input powers at low temper-

ature (Figure 5.6b, red circles) to determine the heating due to the intracavity photon population.

We note an initial blueshift of the cavity, which is attributed to free carrier dispersion effects [68]

and can be modeled by a power law dependence on intracavity photon number, A(nc)
B , where A

and B are fitting parameters. The temperature-dependent data for the refractive index of silicon in

[119] is valid only for T > 30 K, so the power-dependent cavity heating for a starting temperature

of 17.6 K, for the largest intracavity photon number, can only be bounded. For the upper bound,

we assume dn/dT = 0 for T < 30 K, resulting in a ∆Tmax of 16.8 K. For the lower bound, we

assume dn/dT = dn/dT |T=30 K for T < 30 K, resulting in a ∆Tmin of 7.8 K. These bounds and

their respective fits are shown in Figure 5.6b.

Independent measurements of the mechanical quality factor, Qm, at varying bath temperatures

indicate that the Qm changes with temperature (Figure 5.7a). These measurements are taken at low

intracavity photon number, rendering free carrier effects negligible (see Section 5.5.2). As such we

can model the mechanical loss rate as γi(T ) = γi,T (T ) + γ
(0)
i where γ

(0)
i is the measured mechanical

loss rate at the reference temperature (17.6 K). The extracted form of γi,T (T ) is shown in Figure 5.7b.

Temperature dependence of mechanical damping sources are further discussion in Section 3.4.3.

5.5.2 Intracavity Photon Number Dependence

The deviation of the expected cooled phonon number from the measured value is a result of two

factors: bath heating and an increase in the intrinsic mechanical loss rate (γi) due to heating and free

carriers. Since the integrated spectral power of the noise PSD near ωm depends on the product γiTb



64

10 100

(γ
i,T

 +
 γ

i,F
C)/

2π
 (k

H
z)

nc

0

10

20

30

40

50

a b

γ i/2
π 

(k
H

z)

10 100 1,000
nc

−5

0

5

10

15

60

70

80

Figure 5.8: Photon number–dependent loss. a, Excess loss as a function of nc, inferred from
far-red-detuned (∆ > 5.5 GHz) measurements of γ(nc) − γ(0)(nc) = γi,T (T (nc)) + γi,FC(nc). b,

Breakdown showing the individual contributions of γ
(0)
i (gray), γi,T (red), and γi,FC (blue) to the

total γi (#).

(for large intracavity photon numbers, nc), naively ignoring the latter effect results in an estimated

change of >50 K in the bath temperature for ∼2,000 intracavity photons. This is unrealistic as

(5.26) predicts that such a temperature change would tune the optical mode red by >300 pm, while

the actual measured shift is closer to 10−20 pm (from Figure 5.6b). Thus, we attribute part of the

deviation in phonon number to a nonlinear process in the cavity involving the generation of free

carriers, and introduce an additional loss channel γi,FC in the intrinsic mechanical loss rate so that

we have an intracavity photon number dependent loss rate given by

γi → γi(nc) ≡ γ(0)
i + γi,T (T (nc)) + γi,FC(nc). (5.27)

From previous derivations, in the absence of heating effects, we would have a damped mechanical

linewidth given by γ(0)(nc) = γ
(0)
i + γOM(nc) (which can be computed for any nc and any ∆ from

the optical/mechanical characterizations at low intracavity photon numbers). Incorporating (5.27),

we have experimentally, γ(nc) = γi(nc) + γOM(nc), with their difference,

γ(nc)− γ(0)(nc) = γi,T (T (nc)) + γi,FC(nc), (5.28)

yielding the magnitude of the additional loss rates. However, for ∆ = ωm and nc > 10, γOM tends

to be large compared to γi, making this subtraction quite error prone. To get accurate data for high

intracavity photon numbers we use larger detunings, ∆� ωm, noting from (2.46) that γOM ∝ ∆−2

for ∆ � ωm and fixed nc (approximately). Thus, for the same intracavity photon number at a

larger detuning, we have a smaller γOM. The disadvantage of this of course is that we cannot obtain
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Figure 5.9: Loss due to free carriers. The Qm degradation as a function of 532 nm laser
power (red #). The black line shows the expected Qm for the bath temperature rise inferred from
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large intracavity photon numbers due to limits in laser power (the highest we achieve is ∼500). The

results of these large detuning measurements are shown in Figure 5.8a, where we have modeled the

excess loss using a power law dependence on nc.

The addition of a free carrier related loss channel is corroborated by pumping the silicon sample

above the band gap with a 532 nm solid state green laser, directly stimulating the production of free

carriers. The results of this is shown in Figure 5.9. The degradation in Qm can be only partially

explained by heating due to absorption since the maximum 19 K temperature rise estimated from the

cavity redshift results in an expected Qm of approximately 70,000 at the highest power (estimated

using Figure 5.7a), whereas a far lower value is measured. The remaining excess loss is attributed

to the presence of free carriers.

5.5.3 Combined Loss Model

We use the models of excess mechanical loss from Figure 5.8a and Figure 5.7b in the mechanical

mode thermometry procedure outlined in Section 5.3 by replacing the constant γi with the intracavity

photon number dependent γi(nc) from (5.27). In this way, we can more accurately characterize the

temperature rise in the cavity, as well as determine the individual contributions of γi,T and γi,FC as

a function of nc (breakdown shown in Figure 5.8b). The result is an estimated increase of 13.2 K

in Tb at the highest input power, well within the temperature bounds derived in Section 5.5.1. We



66

note that the minimum phonon occupation is unchanged by this analysis since all we are doing is

determining relative contributions to the conserved product, γiTb.

5.6 Noise Considerations

5.6.1 Phase Noise

In the measurements of this work, the same optical laser beam used to cool the mechanical oscillator

is also used to detect its mechanical motion. Photodetection of the transmitted cooling beam and

the light scattered by the mechanical oscillator produce a heterodyne output signal proportional to

the mechanical motion. This also means that fluctuations in the cooling laser beam input that are

imprinted into the mechanical system, are also read out by a beam containing the same fluctuations.

In addition to potentially raising the phonon number beyond the quantum-backaction limit (in the

case of added technical laser noise beyond shot noise), noise on the input cooling beam can also

lead to a coherent cancellation effect at the readout called “noise squashing” which may cause the

mechanical mode occupation to be inferred incorrectly (note that this effect can also be understood in

terms of the recently demonstrated electromagnetically induced transparency (EIT), whereby noise

photons are transmitted and/or reflected through a transparency window created by the cooling

beam). Noise squashing has been studied in low-frequency mechanical systems, where excess laser

phase noise can be an issue, and in recent microwave work where the electromagnetic cavity is

populated with residual photons [49].

In this section, we will model the impact of laser phase noise on the previously derived results

in Section 2.2. In brief, we show theoretically that the additional cavity noise photons cause an

offset in the measured background (broadband) NPSD, which when compared in magnitude to the

narrowband Lorentzian signal generated by the mechanical system can be used to assess the impact

of the added noise on the inferred phonon population from the measured spectrum. We present

the measured offset in the background NPSD versus cooling beam power for the cooling data of

Figure 5.5, and compare it with the measured narrowband Lorentzian signal level, indicating that

any added noise photons produce at most a 3% uncertainty in the inferred phonon occupancy of the

mechanical oscillator. This analysis closely follows the work by Safavi-Naeini et al. [120].

We can model phase noise as a random rotating phase factor on the input field amplitude, given

in the frame rotating with ω` as

αin → αine
iφ(t) ≈ αin

(
1 + iφ(t)− φ(t)2

2
+O(φ(t)3)

)
, (5.29)

where φ(t) is a stationary, zero-mean (〈φ(t)〉 = 0), random variable presumed to be small (φ(t)� 1),

and we can assume φ(0) = 0. Random variables are characterized by their correlations, but since
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the autocorrelation for a stationary process depends only on the difference in t, we can write without

a loss of generality,

〈α∗in(τ)αin(0)〉 = |αin|2
(

1− 1

2
〈φ2(τ)〉

)
. (5.30)

We will ultimately treat the random phase factor as an additional perturbative input field, âin,φ,

with nonvanishing correlations 〈â†in,φ(ω)âin,φ(ω′)〉. In the context of the derivations from Section 2.2,

we will map âin → âin + âin,φ and consider the impact on the steady state mechanical mode oc-

cupancy, (2.57), and the normalized spectral density, (2.63). Since the derivations were done by

linearizing about a large steady state intracavity population, we recognize the second term in (5.30)

as 〈â†in,φ(τ)âin,φ(0)〉. Noting that φ(τ) =
´ τ

0
ds φ̇(s) and Sφ̇φ̇(ω′) = ω′2Sφφ(ω) (integration by parts),

we have

〈â†in,φ(τ)âin,φ(0)〉 = −|αin|2

2

ˆ τ

0

ds

ˆ τ

0

ds′ 〈φ̇(s)φ̇(s′)〉

= −|αin|2

2

ˆ τ

0

ds

ˆ τ

0

ds′
ˆ ∞
−∞

dω′

2π
eiω
′(s−s′)Sφ̇φ̇(ω′)

= −|αin|2

2

ˆ ∞
−∞

dω′

2π

(
eiω
′τ − 1

iω′

)(
e−iω

′τ − 1

−iω′

)
Sφ̇φ̇(ω′)

= −|αin|2
ˆ ∞
−∞

dω′

2π

(
1− cos(ω′τ)

ω′2

)
Sφ̇φ̇(ω′)

= −|αin|2
ˆ ∞
−∞

dω′

2π
(1− cos(ω′τ))Sφφ(ω′). (5.31)

The spectral density is given by

Sain,φain,φ(ω) = −|αin|2
ˆ ∞
−∞

dτ eiωτ
ˆ ∞
−∞

dω′

2π
(1− cos(ω′τ))Sφφ(ω′)

= −|αin|2δ(ω)

ˆ ∞
−∞

dω′ Sφφ(ω′) +
|αin|2

2
(Sφφ(ω) + Sφφ(−ω)) . (5.32)

We can then compute the correlations in the frequency domain,

〈â†in,φ(ω)âin,φ(ω′)〉 =
1

2π

ˆ ∞
−∞

dt

ˆ ∞
−∞

dt′ e−iωte−iω
′t′〈â†in,φ(t)âin,φ(t′)〉,

which we can simplify by applying the coordinate transformation u = t+ t′ and v = t− t′, yielding

〈â†in,φ(ω)âin,φ(ω′)〉 = − 1

4π

ˆ ∞
−∞

du

ˆ ∞
−∞

dv e−iω(u+v2 )e−iω
′(u−v2 )〈â†in,φ(v)âin,φ(0)〉

= δ(ω + ω′)

ˆ ∞
−∞

dv e−iωv〈â†in,φ(v)âin,φ(0)〉

= δ(ω + ω′)Sain,φain,φ(ω), (5.33)
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where we see that the phase noise perturbation can be thought of as a thermal force on the mechanics,

resulting in heating.

Making the replacement âin → âin + âin,φ and recomputing (2.56) with the addition of phase

noise, we have instead

Sbb(ω) =

ˆ ∞
−∞

dω′ 〈b̂†(ω)b̂(ω′)〉

=
γ

(ωm + ω)2 + (γ/2)2

×
(
γinb
γ

+
|G|2κ
γ

1 + (κe/2κ)Sain,φain,φ(ω)

(∆− ω)2 + (κ/2)2
+
|G|2κ
γ

(κe/2κ)Sain,φain,φ(ω)

(∆ + ω)2 + (κ/2)2

)
, (5.34)

and the phase noise modified damped cavity phonon population,

n̄(∆) =
γinb
γ

+
|G|2κ
γ

1 + (κe/2κ)nφ
(∆ + ωm)2 + (κ/2)2

+
|G|2κ
γ

(κe/2κ)nφ
(∆− ωm)2 + (κ/2)2

, (5.35)

where we have defined nφ ≡ Sain,φain,φ(ωm), the number of phase noise quanta at the mechanical

frequency. For ∆ = ωm, we have

n̄(ωm) ≈ γinb
γ

+
|G|2κ
4γω2

m

(
1 +

κe
2κ
nφ

)
+

4|G|2

γκ

κe
2κ
nφ

≈ γinb
γ

+
γOM

γ

((
κ

4ωm

)2

+
κe
2κ
nφ

)
. (5.36)

Thus, we can see that phase noise heating manifests as the number of phase quanta at ωm (nφ),

modified by both the cavity coupling efficiency (κe/2κ) and the optics–mechanics coupling efficiency

(γOM/γ).

We can now determine the modified induced photocurrent by treating the phase noise as a

detuned drive and utilizing the frequency response of the cavity on transmission, t+(ω) (assuming

∆ = ωm), given by (2.39). Considering just the contribution from the phase noise, the fluctuating

optical power near ωm will be proportional to N̂φ = t+(ω)ain,φ(ω) + t∗+(−ω)a†in,φ(ω). The model

of phase noise we have chosen imposes a relationship between the positive and negative frequency

components of âin,φ(ω). We can see this by imposing a small, strictly sinusoidal phase modulation

in place of φ(t), yielding

αin → αine
iβc cosωt+iβs sinωt ≈ αin

(
1 +

βs + iβc
2

eiωt − βs − iβc
2

e−iωt
)
, (5.37)
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from which we can deduce that â
(+)
in,φ(ω) = −

(
â

(−)
in,φ(−ω)

)†
, having defined

â
(+)
in,φ(ω) = Θ(ω)âin,φ(ω), (5.38)

â
(−)
in,φ(ω) = Θ(−ω)âin,φ(ω), (5.39)

as the positive and negative frequency components respectively (where Θ(ω) is the Heaviside func-

tion), satisfying âin,φ(ω) = â
(+)
in,φ(ω) + â

(−)
in,φ(ω) = â

(+)
in,φ(ω) − â

(+)†
in,φ (ω). With this symmetry, the

correlation given by (5.33) can be written

〈â†in,φ(ω)âin,φ(ω′)〉 = δ(ω + ω′)Sain,φain,φ(ω)

×
(

Θ(ω)Θ(ω′) + Θ(ω)Θ(−ω′) + Θ(−ω)Θ(ω′) + Θ(−ω)Θ(−ω′)
)
. (5.40)

The symmetry also results in additional cancellations in N̂φ, yielding the simplified form,

N̂φ = r+(ω)ain,φ(ω) + r∗+(−ω)a†in,φ(ω), (5.41)

the spectral density of which is

SNφNφ(ω) =
(
|r+(ω)|2Θ(ω) + |r+(−ω)|2Θ(−ω)

)
Sain,φain,φ(ω), (5.42)

having used the expanded form of 〈â†in,φ(ω)âin,φ(ω′)〉 from above, and noting that Θ(ω)Θ(−ω) van-

ishes and Θ(ω)Θ(ω) = Θ(ω). Using the previously derived expression for |r+(ω)|2 (5.8) and con-

cerning ourselves only with ∆ = ωm, ω close to ωm, and the large cooperativity limit (γOM � γi),

SNφNφ(ω) ≈ nφ
(κe
κ

)2
(

1− γ2
OM

4

1

(ωm − ω)2 + (γ/2)2
− γ2

OM

4

1

(ωm + ω)2 + (γ/2)2

)
= nφ

(κe
κ

)2

− 4κe|G|2

κ2

4|G|2

κ

(κe/2κ)nφ
2

(
1

(ωm − ω)2 + (γ/2)2
+

1

(ωm + ω)2 + (γ/2)2

)
.

(5.43)

The crucial point to note is that the second term is effectively an inverted Lorentzian that reduces the

overall amplitude of the measured power spectral density, resulting in an inferred phonon number,

n̄inf, smaller than the true phonon number. The complete phase noise modified spectrum can be

obtained by adding this to (2.63), giving

SNN (ω) = 1 + nφ

(κe
κ

)2

+
4κe|G|2

κ2
S̄bb(ω; n̄inf), (5.44)
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Figure 5.10: Phase noise–modified output spectra. An exaggerated plot of the impact of phase
noise on the measured power spectral density. The thick black line with red fill is the actual measured
signal, given in its normalized form by SNN (5.44), with a normalized amplitude A = 2κen̄inf/κ in
the large cooperativity limit. The green curve showing the magnitude of the “squashing” effect
(corresponding to the inverted Lorentzian term in (5.43)). The dashed blue curve indicates the
theoretical signal in the absence of phase noise. The orange is the flat excess background signal due
to phase noise and the gray is the shot-noise level. The difference in backgrounds for a far detuned
signal, ∆� ωm, and a spectrum measured at ∆ = ωm is given by ∆NBG = nφ(κe/κ)2 (again, for a
normalized spectra).

where integrating S̄bb(ω; n̄inf) near ω = ωm yields

n̄inf =
γinb
γ
− κenφ

2κ
. (5.45)

Thus, we will underestimate the true phonon occupation by n̄ − n̄inf = κenφ/κ. The individual

contributions to the phase noise modified normalized spectral density are shown in Figure 5.10.

In the context of the cooling experiment, we can estimate the heating caused by excess phase

noise by making a second measurement of the optical transmission NPSD with the cooling beam

far-detuned from the cavity (several mechanical frequencies in practice), while keeping all other ex-

perimental parameters constant. The difference around the mechanical frequency in the background

of the NPSD taken far-detuned, NBG,detuned, and the background of the spectrum taken during

a cooling run, NBG, may be used to place bounds on the difference between n̄ and the measured

n̄inf. By doing a background subtraction of the far-detuned measured RF spectra from the cooling

spectra, we can fit A and ∆NBG ≡ NBG −NBG,detuned for each cooling beam power. We have then

∆NBG

A
=
nφ(κe/κ)2

2κen̄inf/κ
=
κe
2κ

nφ
n̄inf

, (5.46)

where we compare the measured ratio to the expected ratio calculated from (5.44) in the large
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Figure 5.11: Experiment phase noise analysis. a, Typical recorded cooling spectrum showing
that the background of the measured Lorentzian (red line) is nearly indistinguishable from the far-
detuned background spectrum (black line). b, Plot versus cooling beam power of the ratio between
the background difference ∆NBG and the peak of the mechanical mode signal A as defined in the
text. The green data point is a filtered laser measurement, exhibiting no significant difference from
the unfiltered measurements.

cooperativity limit. Thus, in the same large cooperativity limit, the underestimation factor is given

by (n̄− n̄inf)/n̄inf ≈ 2∆NBG/A.

In Figure 5.11 we show a plot of a typical measured cooling and far-detuned noise spectrum pair

for a single cooling beam power along with the deduced ratio ∆NBG/A for each cooling beam power.

Crucially, the ratio ∆NBG/A is seen to be roughly cooling beam power independent and at a level

of less than 1.5%, corresponding to an underestimation of the true phonon number, n̄, at most by

about 3%, well within the established experimental error.

In addition to these background subtraction measurements, a scanning Fabry-Perot filter with

a free spectral range of 5.5 GHz and a bandwidth of 50 MHz was peak-locked to the output of the

laser, providing a noise suppression of >30 dB at ωm. No significant change in the background

(plotted as a single point in Figure 5.11b) or n̄inf was measured, further indicating that laser phase

noise is not a factor in this experiment.

Direct phase noise measurements for the laser used in this experiment (and other lasers in

the lab) can be found in [120], and corroborates the analysis presented here. With these laser

characterizations, we can illustrate the impact of phase noise on the measured signal by purposefully

making a measurement in a noisy region of the laser. One of our lasers (New Focus, model TLB-

6728) has a phase noise peak around 5.1 GHz, while another laser (New Focus, model TLB-6328) is

shot-noise limited in that region. Using a device with a mechanical breathing mode at 5.1 GHz (the

5GHF design, discussed in Section 6.1), we can compare the spectra taken at large cooperativities a

mechanical frequency red-detuned. This is shown in Figure 5.12, where the large amount of phase
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Figure 5.12: Comparison of cooling spectra with and without phase noise. Cooling spectra
for ∆/2π = ωm/2π = 5.1 GHz (in a 5GHF device) and C � 1, comparing the TLB-6728 laser (black
curves, with a phase noise peak just below 5.1 GHz), against the TLB-6328 laser (blue curves, shot-
noise limited near 5.1 GHz), with Pin and all other experimental parameters constant. a, Broad
power spectrum of the measured signals. For the TLB-6728 laser, we see accordingly a significant
noise peak at slightly less than 5.1 GHz on which the mechanical mode at 5.1 GHz sits. The shot-
noise-limited laser exhibits no such peak and the mechanical mode sits on a flat background. b,
Spectral density of the detected signal near ωm for the two lasers. The spectra are colored in analogy
to Figure 5.10 and we see a significant offset in the black curve due to laser phase noise. We further
note a reduced Lorentzian area in the PSD of the noisy laser signal, leading to an underestimation
of the phonon occupation (n̄inf = 0.8 from the black curve compared n̄ = 1.2 from the blue curve).
Credit for this data goes to Amir Safavi-Naeini and Jeff Hill.

noise results in a significantly different spectral density near ωm. In addition to a large phase noise

offset in the Lorentzian signal, the inferred phonon occupation from naively integrating the area

under the peak is smaller than the true phonon occupation due to the noise squashing effect.

5.6.2 Amplifier Noise

We consider here the impact of using a nonideal amplifier (EDFA) on the measured signal, and the

deviation from quantum limits of motion transduction. For a coherent optical beam with frequency

ω` and power P incident on a photodetector, the single-sided power spectral density of the optical

shot noise is simply

Sshot(ω) =
√

2~ω`P , (5.47)

independent of frequency. If we consider the EDFA gain, GEDFA, and the optical insertion loss

between the output of the cavity and the input of the EDFA, ηd (measured to be 2.2 dB), the
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corresponding noise at the output of the amplifier assuming noise-free amplification is given by

Sshot,amplified = GEDFA

√
2~ω`ηdPin, (5.48)

where Pin is the optical power at the input of the cavity and ηdPin is the optical power reaching

the input to the EDFA. We use the term “noise-free amplification” here to indicate an amplifier

process in which the signal-to-noise ratio (SNR) at the output is equal to that at the input (i.e.,

an amplifier noise figure of 0 dB). Using the electronic gain, Ge, obtained from calibrations, the

theoretical background noise power spectral density (NPSD) measured by the RSA, corresponding

to noise-free amplification of shot noise on the optical cooling beam can be found. To wit,

S̃shot,amplified,RSA = (Sshot,amplified)2

(
Ge
ηd

)2
1

RL
, (5.49)

where RL is the input impedance to the RSA and the ratio Ge/ηd is the electrical conversion factor

for optical power at the output of the EDFA (ηd accounts for the loss between the cavity and the

EDFA, while Ge accounts for the total insertion loss between the cavity and the detector). This is

plotted against the measured background NPSD in Figure 5.13a. The trend seen in Figure 5.13a

versus cooling beam power (plotted in units of intracavity photon number, nc) is a result of the

varying EDFA drive current versus nc used in our experiment. Specifically, for intracavity photon

populations of <10, we are limited by the highest gain setting of the EDFA. In this regime, the

EDFA drive current (and thus gain) remains constant, resulting in the increasing background NPSD

with cooling beam optical power. For larger intracavity photon numbers, we are limited by the

saturation power of the detector D2. In this regime, the EDFA drive current (gain) is reduced to

avoid detector saturation, resulting in the decreasing background NPSD with optical cooling beam

power. The difference between the noise-free gain background level modeled by (5.49) and the

measured background level, reflects the added noise due to the EDFA (its noise figure). An ideal

EDFA amplifier adds 3 dB of noise above the shot-noise level [121]. In a real EDFA device, however,

the noise figure of the amplifier depends on both the input power and EDFA drive current (amplifier

inversion level). We define the added EDFA optical noise as the noise above that for a noise-free

amplification process,

S̃excess ≡
S̃background − S̃shot,amplified,RSA

(Ge/ηd)
2

(1/RL)
, (5.50)

where S̃background is the actual noise floor of the NPSD at the output of the EDFA. Although

the EDFA adds excess noise, its utility stems from the fact that the gain provided by the EDFA

overcomes the electronic noise in the photodetectors and RSA, nonunity quantum efficiency in the

photodetectors, and optical insertion loss between the EDFA and detector D2, with a resulting
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Figure 5.13: Effect of amplifier noise and optical losses on the measured signal. a, Compar-
ison of the measured background NPSD to the shot-noise level of the cooling laser beam amplified by
an ideal, noise-free amplifier. b, Comparison of the SNR for several different cases. (i) Experimental
device and measurement conditions of this work. Measured (blue #) and predicted SNR (orange
curve) are both shown. (ii) Shot-noise-limited SNR with noise-free amplification and unit-quantum-
efficiency photodetection, all other device parameters as in the experiment. SNR shown with (red
#) and without (dashed green curve) optical loss between the output of the cavity and the input
to the optical amplifier. (iii) Noise-free amplification and unit-quantum-efficiency photodetection
along with ideal coupling to the cavity system (i.e., single-sided coupling with no other optical loss
channels; equivalent to setting κ = κe/2). This is plotted with (purple dashed curve) and without
(black dashed curve) the optical insertion loss between the output of the cavity and photodetection.
The dashed black curve thus represents an ideal quantum-limited transducer of mechanical motion.

overall SNR penalty of only S̃excess/ηd (derived below).

In addition to broadband noise, the optical cooling beam signal at the output of the cavity also

contains information about the mechanical motion of the localized acoustic mode in the nanobeam

cavity. As shown in (2.64), the transduced mechanical motion results in a narrow Lorentzian signal

centered at the mechanical frequency that sits on top of the noise floor in the NPSD of the trans-

mitted optical beam. Defining the SNR for this measurement as the ratio between the peak of the

Lorentzian component to that of the background in the measured NPSD, we can determine how the

different nonidealities of the measurement process (such as cavity coupling, optical loss, and ampli-

fier excess noise) impact the sensitivity of our measurement of mechanical motion. For example, the

theoretical shot-noise-limited SNR, corresponding to noise-free amplification, ideal photodetection,

and no optical insertion loss after the cavity is given by

SNRshot =
4Pωm/(γi(nc) + γOM)

2~ωoPin
, (5.51)

where the numerator is the theoretical cooled peak signal amplitude due to the mechanical motion,

with the average oscillating power given by (5.10) for a particular nc (note that we include in this

signal amplitude the effects of the power dependent bath temperature shift and modifications to the
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intrinsic mechanical damping rate γi(nc), as discussed above). In Figure 5.13b we consider several

cases for comparison:

i. Measurement and cavity parameters as used in this work. This includes all nonidealities.

The actually measured SNR along with a predicted SNR based upon independent measurement

and calibration of the device and experimental setup are shown. For the predicted SNR we

have,

SNRpredicted =
4G2

EDFAG
2
ePωm/RL(γi(nc) + γOM)

S̃background

=
4G2

EDFAPωm/(γi(nc) + γOM)

2~ωoG2
EDFAPin + S̃excess/ηd

ηd, (5.52)

which closely corresponds to the actual measured SNR values, as seen in Figure 5.13b. The

deviation of the curve shape of the measured SNR from the other cases is attributed primarily

to the variance in the excess noise added by the EDFA amplification.

ii. Shot-noise-limited detection. We consider both with and without loss in the optical path

after the cavity (all other cavity parameters and nonidealities as per the measured device). In

the case with optical loss in the optical path we have instead of (5.51),

SNRshot,lossy =
4Pωm/(γi(nc) + γOM)

2~ωoPin
ηd, (5.53)

where 1− ηd is the insertion loss discussed above.

iii. An ideally coupled cavity system with shot-noise-limited detection. In this case we

consider a perfect single-sided cavity system (equivalent to setting κ = κe/2) with all other device

parameters constant and nonidealities present (excluding added amplifier noise). We repeat

the same analysis for the insertion-loss-free case, representing an optimal (quantum-limited)

transduction of motion. Considering all the above cases one can infer that a significant fraction

of the degradation in our measured SNR from that of an ideal quantum-limited transducer

stems from the nonideality of our cavity loading (photons carrying information regarding the

mechanical motion are lost into nondetected channels). The remaining inefficiencies in our

detection process are a result of the added noise due to the nonideality of the EDFA amplification

and the small amount (2.2 dB) of optical loss in the optical path between the cavity output and

the EDFA.
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5.7 Measurement Imprecision

In considering the limits of a continuous position measurement of the mechanical motion of an object

one typically defines a measurement imprecision level related to the power spectrum noise floor on

top of which the position signal sits [122]. Conventionally, the imprecision level corresponding to

the background NPSD in the power spectrum of the measured signal is expressed in terms of a

mechanical displacement sensitivity with units of m2/Hz. From the quantum mechanical derivation

in Section 2.2 and (2.64), the PSD of the measured output signal in our case (transmission of the

optical cooling beam) is proportional to

SNN (ω) = B +
4κe|G|2

κ2
S̄bb(ω). (5.54)

The background NPSD is set by the constant B, which for unit quantum efficiency and shot-noise-

limited photodetection (as derived), is unity (though for the current measurement, B > 1 due to

added EDFA amplifier noise and optical loss). Since S̄bb(ω) is proportional to n̄ by (2.56), it is

natural to consider the imprecision level of our measurements (due to the background noise level)

in units of phonon quanta. The background NPSD in units of “quanta” is simply

S̃
(quanta)
background = n̄

(
B

4κe|G|2
κ2 S̄bb(ω)

∣∣
ω=ωm

)
. (5.55)

A background NPSD, or imprecision level, of nimp = 1 then, corresponds to the equivalent level of

NPSD in the output signal that would be produced at the peak of the Lorentzian signal by a single

quanta in the mechanical oscillator. For the case of noise-free optical amplification, unit-quantum-

efficiency photodetection, and ideal coupling (κ = κe/2), the value of the constant B is unity and

the background NPSD approaches 1/4 quanta in the large cooperativity limit.

One can convert between an imprecision level in units of quanta and the more conventional

m2/Hz through the relation

S̃
(m2/Hz)
background =

(
4

γ

)(
2x2

zpf

)
S̃

(quanta)
background, (5.56)

where one phonon quanta has 2x2
zpf worth of displacement noise power which is dispersed over

a bandwidth γ (the peak NPSD is 4/γ times the total noise power). The standard quantum

limit (SQL) of displacement sensitivity corresponding to an on-resonance (single-sided) NPSD is

equal to SQLx(ω)|ω=ωm
=
(
x2

zpf/2
)

(4/γ), or one-quarter quanta’s worth of displacement noise

power. Therefore, in terms of this SQL displacement sensitivity, the imprecision levels are related as

S̃
(m2/Hz)
background = (4SQLx) S̃

(quanta)
background. Note that the spectra of the measured NPSD in Figure 5.5b–c of

Section 5.4 are given in units of m2/Hz. In order to determine xzpf for these plots, we numerically
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compute the effective motional mass, meff, following Section 3.3. FEM simulations of the mechanical

breathing mode of the nanobeam cavity yields a motional mass of meff = 311 fg and a corresponding

zero-point fluctuation amplitude of xzpf = 2.7 fm.

5.8 Future Directions

Looking forward, the optical backaction cooling and thermometry, as performed in this work, repre-

sents only a first step toward optical measurement and control of the quantum state of a nanomechan-

ical object. The mechanical system, although cooled to a mode occupancy below one, is still prepared

in a classical thermal state, with its quantum zero-point fluctuations hidden in our measurement

scheme. Future experiments, however, to prepare and measure nonclassical quantum states of the

mechanical system, are now within reach. A basic requirement for optomechanical experiments in

the quantum regime is the ability to exchange photons with the mechanical resonator on a timescale

shorter than that for a single thermal phonon entering the mechanical system from the environment.

The latter, called the thermal decoherence time, is given by τT ≡ ~Qm/kBTb, while the timescale

at which the mechanical resonator exchanges photons with an optical input is τOM ≡ 1/γOM. This

requirement, τOM < τT , is equivalent to the requirement for optical backaction cooling of the me-

chanical oscillator to n̄ < 1, and is thus realized for the optomechanical crystal devices of this

work. This allows for optomechanical entanglement between light and mechanics [123] or quantum

state transfer between single optical photons and mechanical phonons [73, 124], enabling mechanical

systems to function as both quantum transducers [125] and quantum memory elements [126]. In

addition, the chip-scale nature of the optomechanical crystal architecture naturally lends itself to

the creation of coupled photon and phonon circuits, facilitating not only the coupling of multiple

mechanical and optical objects together, but also allowing for the integration of optomechanics with

other quantum system such as superconducting quantum circuits [73]. Finally, if a regime of strong

coupling at the single quanta level (g/κ > 1) [127] could be reached, myriad new opportunities

would be available, not the least of which is nonlinear phononics at the single phonon level and the

generation of highly nonclassical quantum states in the mechanical or optical field.



78

Chapter 6

Other Experiments

6.1 Further Device Improvements (5GHF Design)

As alluded to at the end of Section 3.5, we can additionally factor gpe into the fitness function in

the device optimization procedure. After running the minimization algorithm for several weeks,

the result is the 5GHF design. The new device parameters are listed in Table 3.2 and the FEM

simulations are summarized in Figure 6.1. Device fabrication is done in the same way as outlined

in Section 4.1.

6.1.1 Device Characterization

Under stabilized vacuum (<3 × 10−7 mbar) and cryogenic (Tb ∼ 10 K) conditions, we follow Sec-

tion 5.3.4 and 5.3.5 to measure the mechanical and optical properties of the 5GHF devices. The best

optical resonance was found to have Qo = 9.1× 105, ωo/2π = 194 THz (λo = 1,545 nm), and reso-

nant transmission contrast of 38% (intrinsic Qo,i = 1.2×106). This corresponds to κ/2π = 217 MHz

and κe/2π = 55 MHz. The best mechanical mode was found to have Qm = 6.8 × 105 and

ωm/2π = 5.1 GHz. This corresponds to γi/2π = 7.5 kHz and an fm ·Qm product of 3.5 × 1015

(!). The data for these measurements is presented in Figure 6.2.

6.1.2 Backaction Cooling

In the same way as Section 5.4, we can cool the 5.1 GHz mechanical mode. Unfortunately, technical

difficulties prevented the use of the device presented in the previous section. We use instead a device

with Qo = 3.0 × 105, ωo/2π = 194 THz, κ/2π = 650 MHz, κe/2π = 94 MHz, Qm = 4.2 × 105,

ωm/2π = 5.1 GHz, and γi/2π = 12 kHz. From a bath temperature of ∼10 K (achieved via cryostat

improvements), we cool to a phonon occupation of 0.73 ± 0.07, with an optomechanical coupling

rate of 867 kHz. These results are shown in Figure 6.3. As this is only a marginal improvement over

the result from Section 5.4 (despite a significant improvement in device parameters), there appears
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to be heating effects in these devices that we do not yet fully understand.
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Figure 6.1: FEM simulations of the 5GHF design. FEM simulations corresponding to the
normalized a, Ey field of the fundamental optical mode, b, displacement field, |Q|, of the fun-
damental breathing mode, c, surface integrand in (3.39), showing the individual contributions to
gmb, and d, volume integrand in (3.47), showing the individual contributions to gpe. While qual-
itatively seemingly very similar to the 5G design, both the mechanical frequency (5.7 GHz versus
4.2 GHz, simulated) and the optomechanical coupling rate (780 kHz versus 500 kHz, simulated) are
significantly higher.
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Figure 6.2: 5GHF device characterization. a, The normalized optical transmission spectrum
measured on D3 from which κ, κe, and ωo are extracted. b, The mechanical noise spectrum measured
around the resonance frequency of the breathing mode, ωm, at cooperativity C = 0.3, for ∆ = +ωm
(red) and ∆ = −ωm (blue), from which γi can be inferred. The black trace corresponds to the
measured noise floor with the drive laser detuned far from the cavity resonance.
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Figure 6.3: 5GHF backaction cooling. a, Measured (#) average phonon number, n̄, in the
breathing mechanical mode at ωm/2π = 5.1 GHz versus cooling laser drive power (in units of
intracavity photons, nc), as deduced from the calibrated area under the Lorentzian lineshape of the

mechanical noise power spectrum, ˜̄SP . The dashed blue line indicates the estimated mode phonon
number from the measured optical damping alone. Error bars indicate estimated uncertainties as
outlined in Section 5.4.4. b, Measured cooperativity (�), with a linear fit (red dashed line) to
estimate the zero-point optomechanical coupling rate (g/2π = 867 kHz). c, The measured noise
power spectrum in units of m2/Hz (using xzpf = 3.6 fm, corresponding to the numerically computed
motional mass for the breathing mode of meff = 127 fg) at the highest laser cooling power. Credit
for this data goes to Amir Safavi-Naeini and Jeff Hill.

6.2 Free Space Couplers

The rapid development and characterization of nanobeam designs [52, 56, 57, 59, 60, 101] is in large

part thanks to the extremely flexible, dimpled tapered fiber technology developed within the Painter

group [69]. However, the coupling scheme does suffer from a few disadvantages. As mentioned at

the beginning of Chapter 2, we have effectively a two-sided coupling scheme, so even in the best

case, we have coupling to a “lost” channel (reflection) at a rate of κ/2. In addition, positioning the

taper for evanescent coupling to a particular nanobeam without significantly perturbing the optical

mode is a delicate task requiring a constant line of sight to the devices, a condition that is difficult to

achieve if we move to lower temperature cryogenic setups. Related is the issue that stable coupling

generally requires touching the taper to the silicon surface, and for a taper that is ∼2 µm in diameter

(compared to nanobeams that are <1 µm wide), this can lead to a significant reduction in optical and
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mechanical quality factors if the taper is inadvertently touching the nanobeam itself. Lastly, since

the taper is formed by heating and stretching an optical fiber, weakening its structural integrity, the

thermal gradients induced by the transition to cryogenic conditions can cause the taper to break, a

problem that plagued the experiment in Section 5.4 for several months. We briefly outline here an

alternative, vertical free-space coupling scheme using a ball lense fiber that addresses some of these

issues, while maintaining many of the taper coupling scheme advantages (Appendix D.6).

Similar to the well-known grating couplers [128–135], the challenge of free space coupling from

an optical fiber to an integrated SOI waveguide is the significant mismatch between the single-mode

fiber mode profile (confined to a core region of∼10 µm) and the mode profile of an in-plane waveguide

mode (confined to a width and thickness of <1 µm). While theoretical power coupling efficiencies

in grating couplers can exceed 90% [130], typical demonstrated values are closer to ∼30% in large

planar SOI designs (>80 µm long), with significant improvements to ∼60%−70% by introducing

fabrication complications such as nonuniform etching [134], an additional silicon overlay [133], or

substrate engineering [136]. We propose instead a coupler based on mode-matching a Gaussian beam

profile to the far field of an optical resonance in a highly tailorable, quasi-2D optical cavity. This

cavity is then coupled to a low loss W1 waveguide for in-plane routing [137].

6.2.1 Numerical Simulations

We require a low quality factor optical mode (ideally Qo < 100 for a coupler bandwidth >15 nm)

with a far field that has a large overlap integral with a Gaussian beam mode. The electric field

amplitude of the latter is given in cylindrical coordinates, with ẑ along the axial direction of the

beam, by [138]

Eb(r, z) = E0
w0

w(z)
exp

(
− r2

w2(z)

)
exp

(
−ikz − ik r2

2R(z)
+ iζ(z)

)
, (6.1)

where E0 is the beam amplitude, w(z) ≡ w0

√
1 + (z/zR)2 is the beam width, w0 is the minimum

beam radius (beam waist), zR = πw2
0/λo is the Rayleigh range, λo is the optical wavelength, R(z) ≡

z(1+(zR/z)
2) is the radius of curvature, and ζ(z) ≡ arctan(z/zR) is the Gouy phase. A direct finite

element simulation of the far field of an optical cavity mode is quite computationally expensive

(requiring a simulation volume comparable to the far field distance, typically several microns).

Instead, we simulate a much smaller volume and use the principles discussed in Section 3.2 to infer

the far field from the near field simulations. Taking a 2D spatial fast Fourier transform (FFT) of the

dominant electric field polarization in a plane above the crystal surface yields the modal distribution

of in-plane k-vector component amplitudes, k‖ =
√
k2
x + k2

y. Modes that can propagate without

exponential decay in free space correspond to k‖ < ωo/c = |k| so we retain only k‖ components

satisfying this inequality. We then evolve this modal distribution over a distance of h by multiplying
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Figure 6.4: Numerical simulations of a free-space coupler. a, a 2D FEM simulation of a
candidate coupler mode without a coupling waveguide (normalized Ey plotted), showing an exterior
crystal region (small circles) with a complete photonic bandgap at 1,550 nm acting as the “mirror”
for the lossy optical cavity mode in the coupling region (large circles). The gray indicates 220 nm
silicon while the white indicates an air hole. b, The same structure with a W1 waveguide. It is
desirable for the loss in the ŷ direction to match the loss in the ẑ direction (out of the page). c,
A slice of Ey from a, taken just above the silicon substrate, d, the 2D spatial FFT of c, e, the
“propagated” version of c, and, f, the best-fit Gaussian beam mode profile with ξ = 0.94.

the propagating components with exp(ih
√
|k| − k‖). Finally, we revert back to the coordinate basis

by inverse 2D FFT, resulting in the far field spatial electric field mode distribution, E′y(x, y). We

then perform a fit of this spatial distribution to (6.1), keeping the beam waist (w0), waist height

(z), beam radius (r) and amplitude (E0) as free parameters, with the goodness of fit determined by

the mode overlap integral

ξ =

˜
dxdy |E′y(x, y)Eb(x, y, z)|˜
dxdy |E′y(x, y)||Eb(x, y, z)|

. (6.2)

Thus, each cavity mode can be characterized by a best-fit set of beam parameters and a normalized

mode overlap of the far field. We can then introduce the W1 waveguide and look for modes that have

matched loss rates between the W1 waveguide and the vertical, ẑ direction. This entire procedure

is summarized in Figure 6.4.
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Figure 6.5: SEM image of a free-space coupler and related designs. a, Zoomed-in view
of a fabricated free-space coupler showing the coupling region and the W1 waveguide. The W1
waveguide acts as a generic port for the free-space couplers, allowing them to be easily combined
with a variety of photonic crystal cavity geometries, such as b, butt coupled to a 5G device so we
have the desired one-sided coupling scheme, or c, side coupled to a nanobeam allowing a phononic
shield to be maintained around the device.

6.2.2 Fabrication and Preliminary Results

As with the other devices in this work, the waveguide couplers can be fabricated following the

procedure in Section 4.1, with scanning electron microscope (SEM) images of the results shown

in Figure 6.5. Characterization is done using a ball lens fiber mounted on a set of Suruga Seiki

motorized linear stage (for all three axis). For the device in Figure 6.5b, an example of a measured

wavelength-dependent reflection spectrum is shown in Figure 6.6. Currently, we can obtain an in–out

coupling efficiency of ∼20% (one way losses are ∼3.5 dB), indicating further refinement is required.
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Figure 6.6: Optical characterization of a free-space coupler. The free-space coupler is butt
coupled to a 5G device. a, A broad wavelength scan of the reflection response of the butt-coupled
free-space coupler. The broad peak indicated with the dashed red lie is the lossy free-space coupler
cavity mode (with a 3 dB bandwidth of ∼8 nm or ∼100 GHz and peak in–out coupling efficiency of
20%). Further experimentation needs to be done to understand the fringe pattern modulating this
peak. We can also see a narrow linewidth dip in the gray region corresponding to the optical cavity
mode of the 5G device. b, A narrow wavelength scan of the gray region in a, showing an optical
resonance with a Qo of 7.3× 105. Credit for the data goes to Simon Gröblacher.

6.3 Motional Sideband Asymmetry

In the measurement performed in Section 5.4, the spectral signature imprinted by the mechanical mo-

tion of the oscillator is directly proportional to the mechanical mode occupancy, n̄. Consequently, an

occupancy approaching zero manifests as a vanishing signal; the zero-point motion of the nanobeam

is hidden, and there is no clear indication that the quantum regime has been breached. This is be-

cause Sbb (the spectral density the signal is proportional to) is a measure of the mechanical system’s

ability to emit energy (or from the experimentalist’s perspective, the ability to extract energy from

the mechanics), and it is well-known that zero-point motion cannot do work [139]. These quantum

fluctuations can, however, are very capable of absorbing energy, a process described by Sb†b† [122].

Using (2.47) and the correlations given by (2.49)–(2.54), we can write a simple expression for Sbb

and Sb†b† in the absence of a coupled optical field (by setting α0 = 0),

Sbb(ω) =
γinb

(ωm + ω)2 + (γi/2)2
(6.3)

Sb†b†(ω) =
γi(nb + 1)

(ωm − ω)2 + (γi/2)2
. (6.4)
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For the position operator x̂ = xzpf(b̂
† + b̂), we have an asymmetric (in the positive and negative

frequency components) displacement spectrum

Sxx(ω) = Sb†b†(ω) + Sbb(ω)

= x2
zpf

(
γi(nb + 1)

(ωm − ω)2 + (γi/2)2
+

γinb
(ωm + ω)2 + (γi/2)2

)
, (6.5)

which recovers the classical displacement spectrum (with equal sideband amplitudes) in the large nb

limit. We see then the asymmetry arises from the finite commutation relation of b̂ and b̂†, a purely

quantum phenomenon.

6.3.1 Observing Zero-Point Motion

In [140], Safavi-Naeini et al. use the 5G devices to demonstrate this spectral asymmetry using an

additional probe laser and a second optical cavity mode as a filter to select a particular (positive

or negative) frequency component of the displacement spectrum. For ∆ = ωm (of the probe), the

resulting spectrum is given by (2.63) with a modification to the cooling-beam-only damped phonon

occupation, n̄, resulting from backaction of the probe beam (expressed as the probe cooperativity,

Cp),

SNN,+ = 1 +
4κe|G|2

κ2
S̄bb

(
ω;

n̄

1 + Cp

)
. (6.6)

We can derive a similar expression for ∆ = −ωm (assuming a weak probe) where we have instead

of (2.62),

SNN,−(ω) =

ˆ ∞
−∞

dω′ t−(ω)t∗(−ω′)〈âin(ω)â†in(ω′)〉+ η−(ω)η∗−(−ω′)〈âin,i(ω)â†in,i(ω
′)〉

+ s12,−(ω)s∗12,−(−ω′)〈b̂†in(ω)b̂in(ω′)〉+ s∗12,−(−ω)s12,−(ω′)〈b̂in(ω)b̂†in(ω′)〉

= |t−(ω)|2 + |η−(ω)|2 + |s12,−(−ω)|2 + nb(|s12,−(ω)|2 + |s12,−(−ω)|2)

= 1 +
4κe|G|2

κ2

γi(n̄+ 1)

2

(
1

(ωm − ω)2 + (γ/2)2
+

1

(ωm + ω)2 + (γ/2)2

)
= 1 +

4κe|G|2

κ2
S̄b†b†

(
ω;

n̄+ 1

1− Cp

)
, (6.7)

having used t−(ω)2 +η−(ω)2 = 1+ |s12,−(ω)|2 valid for blue side driving. Integrating (6.6) and (6.7)

near ωm (with appropriate proportionality constants and after subtracting the shot-noise back-

ground) yields the respective spectral power near ωm, Pωm,+ (anti-Stokes sideband power; pro-

portional to n̄
1+Cp

) and Pωm,− (Stokes sideband power; proportional to n̄+1
1−Cp ). The asymmetry
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Figure 6.7: Measuring zero-point motion. From [140]. a, The mechanical mode occupancy,
n̄, as a function of measured mechanical mode linewidth, γ, with estimated mode phonon num-
ber from the measured optical damping alone (blue dashed line), given by γinb/(γ − γi). b, The
measured asymmetry, η′ (defined in the text), as a function of n̄ (vertical axis) with the theoreti-
cal quantum (red line) and classical behavior (blue line). For the highlighted asymmetry points, c,
n̄ = 85 phonons, and d, n̄ = 3.2 phonons, the measured Stokes (red) and anti-Stokes (blue) sideband
spectra are plotted superimposed on a linewidth normalized x-axis to highlight the asymmetry in
the area (red region).

(adjusting for the the probe cooperativity), is given by

η′ ≡ Pωm,−/Pωm,+
1 + Cp

− 1

1− Cp
=

1

n̄
. (6.8)

In the experiment, an asymmetry of η′ ≈ 40% is measured at the minimum achieved phonon

occupation of n̄ = 2.6 ± 0.2, showing good correspondence to the theoretical expectation. These

results are summarized in Figure 6.7.
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Appendix A

Mathematical Definitions

A.1 Fourier Transform

For an operator, Ô, the Fourier transform pair is defined to be [141]

Ô(t) =
1√
2π

ˆ ∞
−∞

dω e−iωtÔ(ω), (A.1)

Ô(ω) =
1√
2π

ˆ ∞
−∞

dt eiωtÔ(t). (A.2)

We note specifically that

(
Ô(−ω)

)†
=

(
1√
2π

ˆ ∞
−∞

dω e−iωtÔ(t)

)†
=

1√
2π

ˆ ∞
−∞

dω eiωtÔ†(t)

= Ô†(ω). (A.3)

A.2 Delta Functions

Several properties of the Dirac delta function δ(x) are listed here [141].

ˆ ∞
−∞

dt δ(t) = 1 (A.4)

ˆ ∞
−∞

dt f(t)δ(t− t0) = f(t0) (A.5)

ˆ t0

−∞
dt f(t)δ(t− t0) =

1

2
f(t0) (A.6)

ˆ ∞
−∞

dω eiω(t−t0) = 2πδ(t− t0) (A.7)
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Related is the Kronecker delta function

δij =

0, if i 6= j,

1, if i = j.
(A.8)

A.3 Spectral Density

The spectral density of an operator Ô is defined as

SOO(ω) =

ˆ ∞
−∞

dτ eiωτ 〈Ô†(t+ τ)Ô(t)〉, (A.9)

where 〈· · · 〉 indicates an ensemble average [74]. Using the definitions from above and assuming Ô is

stationary, the spectral density can also be written as

SOO(ω) =
1

2π

ˆ ∞
−∞

dτ eiωτ
〈ˆ ∞
−∞

dω′ e−iω
′(t+τ)Ô†(ω′)

ˆ ∞
−∞

dω′′ e−iω
′′tÔ(ω′′)

〉
=

ˆ ∞
−∞

dω′〈e2iω′tÔ†(ω)Ô(ω′)〉

=

ˆ ∞
−∞

dω′〈Ô†(ω)Ô(ω′)〉. (A.10)

We further define the symmetrized spectral density as S̄OO = (SOO(ω) + SOO(−ω))/2 and the one-

sided spectral density as S̄O(ω) = 2S̄OO. The latter is the measurement made by the spectrum

analyzer. The average oscillating power in a ±δ window around ω is

Pω =
1

2π

ˆ ω+δ

ω−δ
dω′ S̄O(ω′). (A.11)

A.4 Commutation Relations

The commutator of two operators Â and B̂ is defined [Â, B̂] = ÂB̂ − B̂Â. We list several useful

identities here [81].

[Â, Â] = 0 (A.12)

[Â, B̂] = −[B̂, Â] (A.13)

[Â, B̂Ĉ] = B̂[Â, Ĉ] + [Â, B̂]Ĉ (A.14)

eÂB̂e−Â = B̂ + [Â, B̂] +
1

2!
[Â, [Â, B̂]] +

1

3!
[Â, [Â, [Â, B̂]]] + · · · (∗) (A.15)

∗This is the Campbell-Baker-Hausdorff expansion.
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We note for the special case of creation (â†) and annihilation (â) operators with the canonical

commutation relation [â, â†] = 1, for some scalar quantity λ, we have the identity

eλâ
†ââe−λâ

†â = â+ λ[â†â, â] +
λ2

2!
[â†â, [â†â, â]] +

λ3

3!
[â†â, [â†â, [â†â, â]]] + · · ·

= â

(
1 + (−λ) +

(−λ)2

2!
+

(−λ)3

3!
+ · · ·

)
= âe−λ, (A.16)

having used [â†â, â] = [â†, â]â = −â and (A.15). We also have

eλ
∗â†ââ†e−λâ

†â = â†eλ. (A.17)

A.5 Differential Equations

First-order differential equations of the form d
dty(t) = ẏ(t) = p(t)y(t) + q(t) have the solution

y(t) =

´
dt e−

´ t dt′ p(t′)q(t) + C

e−
´ t dt′ p(t′) , (A.18)

where C is a constant dependent on the initial conditions [142].

A.6 Trigonometric Identities

We list some useful trigonometric identities here.

sin(A+B) = sin (A) cos (B) + sin (B) cos (A) (A.19)

cos(A+B) = cos (A) cos (B)− sin (B) sin (A) (A.20)

A.7 Lorentzian Function

The Lorentzian function has the form

L(ω) =
1

π

γ/2

(ω − ω0)2 + (γ/2)2
, (A.21)

with a single peak at ω0, with a full width at half maximum (FWHM) of γ and an amplitude of

2/γπ. In this form, we have the area conveniently given by

ˆ ∞
−∞

dω L(ω) = 1. (A.22)
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We also note the useful relationship

(ω − ω0)2 + (γ2/2)2

(ω − ω0)2 + (γ1/2)2
= 1− (γ1/2)2 − (γ2/2)2

(ω − ω0)2 + (γ1/2)2
, (A.23)

describing an offset, inverted Lorentzian.

A.8 Contracted Index Notation

A symmetric tensor can be represented in lower order using Voigt notation, essentially a mapping

of indices [143]. For a rank 4 tensor, T , satisfying Tijmn = Tjimn = Tijnm = Tmnij the mapping

xx→ 1,

yy → 2,

zz → 3,

yz, zy → 4,

xz, zx→ 5,

xy, yx→ 6.

(A.24)

reduces the 3× 3× 3× 3 tensor to a 6× 6 matrix.
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Appendix B

Quantum Input–Output Theory

Physical systems do not exist in isolation but we often consider them as such to create a tractable

problem for analysis. Careful consideration of what to consider the “system”, containing the in-

teresting degrees of freedom and what to consider the environment (everything else) is crucial in

providing an accurate description of dynamics. However, there are many problems for which the en-

vironment cannot be ignored. One solution is to approximate the environment as a “heat bath”, and

consider its action on the system as a random perturbative force, an idea originally used to describe

the classical motion of a Brownian particle in a viscous fluid [144]. Such an idealization has been

successful in describing otherwise complicated systems, and further gives rise to the fluctuation–

dissipation theorem [145], in that such a random force is responsible for both the erratic motion of

a particle at rest and the drag on the particle in motion. We show here the quantum analogue of

these ideas, following the treatments by [146–150].

B.1 Quantum Langevin Equation

This discussion is geared toward writing an equation describing the dynamics of a cavity (the system)

coupled to an exterior electromagnetic field (the bath). We begin by idealizing the bath as set of

independent harmonic oscillators with the bath Hamiltonian given by

Ĥbath = ~
∑
q

ωq b̂
†
q b̂q, (B.1)

where q is the quantum number labeling the bath mode and b̂ is the typical boson annihilation

operator satisfying the canonical commutation relation [b̂q, b̂
†
q′ ] = δqq′ . No particular structure is

ascribed to system Hamiltonian, Ĥsys, only that it has a system operator d̂ that interacts with the



92

heat bath linearly via

Ĥint = i~
∑
q

κq(d̂− d̂†)(b̂q + b̂†q), (B.2)

with some quantum number dependent coupling κq, so the total Hamiltonian can be written as

Ĥ = Ĥsys + Ĥbath + Ĥint. (B.3)

Rotating Wave Approximation. We first assume that in the absence of Ĥint, the time evolution

of d̂ is simply d̂(t) = d̂e−iωot where ωo � 1 is the resonant frequency of the system. To shift to an

interaction picture with respect to the free evolution of only the system and the bath, we apply the

unitary transformation

Û(t) = e−
i
~ (Ĥbath+Ĥsys)t, (B.4)

so that using (A.16) and (A.17), the interaction Hamiltonian is now

Hint → Û†HintÛ = i~
∑
q

κq

(
d̂e−iωot − d̂†eiωot

)(
b̂qe
−iωt + b̂†qe

iωt
)
. (B.5)

We can make the continuum approximation

∑
q

κq →
ˆ ∞

0

dω
dq

dω
κq =

ˆ ∞
0

dω κ(ω), (B.6)

where the mode density terms have been absorbed into κ(ω), giving

Hint = i~
ˆ ∞

0

dωκ(ω)
(
d̂b̂(ω)e−i(ωo+ω)t − b̂†(ω)d̂†ei(ωo+ω)t + d̂b̂†(ω)e−i(ωo−ω)t − b̂(ω)d̂†ei(ωo−ω)t

)
.

(B.7)

where b̂(ω) satisfies [b̂(ω), b̂†(ω′)] = δ(ω − ω′). We now have terms proportional to e±i(ω+ωo)t and

e±i(ω−ωo)t. The former are rapidly oscillating when compared to the latter, having a vanishing cycle

average on the 1/ωo timescale and can be neglected—the rotating wave approximation. For a more

physical argument, if we consider d̂ to be a boson annihilation operator of a cavity mode, we see

that the terms d̂b̂ and b̂†d̂† respectively represent the simultaneous destruction and simultaneous

creation of a bath and system quanta, violating energy conservation. Either reasoning allows the
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interaction term to be rewritten,

Ĥint = i~
∑
q

κq

(
d̂b̂†q − b̂qd̂†

)
. (B.8)

The Heisenberg equations of motion for some operator Ô is given by
˙̂
O(t) = − i

~ [Ô, Ĥ] so we

have immediately

˙̂
bq(t) = −iωq b̂q(t) + κqd̂(t), (B.9)

and for some other system operator â,

˙̂a(t) = − i
~

[â, Ĥsys] +
∑
q

κq

(
[â, d̂]b̂†q(t)− b̂q(t)[â, d̂†]

)
. (B.10)

We would like an independent expression for ˙̂a so we first solve (B.9) using (A.18) to obtain

b̂q(t) = e−iωq(t−t0)b̂q(t0) + κq

ˆ t

t0

dt′ e−iωq(t−t
′)d̂(t′), (B.11)

where b̂q has some initial value b̂q(t0) at time t0 < t. Direct substitution into (B.10) yields

˙̂a(t) = − i
~

[â, Ĥsys] +
∑
q

κq

(
eiωq(t−t0)[â, d̂]b̂†q(t0)− e−iωq(t−t0)b̂q(t0)[â, d̂†]

)
+
∑
q

κ2
q

ˆ t

t0

dt′
(
eiωq(t−t

′)[â, d̂]d̂†(t′)− e−iωq(t−t
′)d̂(t′)[â, d̂†]

)
. (B.12)

First Markov Approximation. We again make the continuum approximation so the last term

becomes

∑
q

κ2
q (· · · )→

ˆ ∞
0

dω κ(ω)2

ˆ t

t0

dt′
(
eiω(t−t′)[â, d̂]d̂†(t′)− e−iω(t−t′)d̂(t′)[â, d̂†]

)
=

ˆ ∞
−∞

dω κ(ω + ωo)
2

ˆ t

t0

dt′
(
ei(ω+ωo)(t−t′)[â, d̂]d̂†(t′)− e−i(ω+ωo)(t−t′)d̂(t′)[â, d̂†]

)
,

(B.13)

where the substitution of ω → ω+ωo allows the lower limit of the integral to be closely approximated

by −∞ for ωo � 1. We assume that the coupling constant is frequency independent, and define

κ(ω) =

√
γ

2π
, (B.14)
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so that

ˆ ∞
−∞

dω κ(ω + ωo)
2

ˆ t

t0

e±iω(t−t′) → γ

2π

ˆ t

t0

δ(t− t′). (B.15)

This immediately allows (B.12) to be integrated (with the help of identities from Appendix A.2 and

the continuum approximation) giving the quantum Langevin equation

˙̂a(t) = − i
~

[â, Ĥsys]−
((γ

2
d̂(t) +

√
γb̂in(t)

)
[â, d̂†]− [â, d̂]

(γ
2
d̂†(t) +

√
γb̂†in(t)

))
, (B.16)

having defined an input field operator

b̂in(t) ≡ 1√
2π

ˆ ∞
−∞

dω e−iω(t−t0)b̂(ω, t0), (B.17)

satisfying the canonical commutation relation

[b̂in(t), b̂†in(t′)] =
1

2π

ˆ ∞
−∞

dω

ˆ ∞
−∞

dω′ e−iω(t−t0)eiω
′(t′−t0)[b̂(ω, t0), b̂†(ω′, t0)] = δ(t− t′). (B.18)

We note that in making this approximation, we remove the dependence of (B.12) on past values of

the system operator d̂, meaning future values of â depend only on the values of system operators

in the present. This is equivalent to assuming the heat bath is strictly Markovian without memory,

hence its namesake.

A similar analysis can be carried out for the case of an initial condition at t1 > t. Analogous to

(B.11),

b̂q(t) = e−iωq(t−t1)b̂q(t1)− κq
ˆ t

t1

dt′ e−iωq(t−t
′)d̂(t′), (B.19)

and defining an output field operator

b̂out(t) ≡
1√
2π

ˆ ∞
−∞

dω e−iω(t−t1)b̂(ω, t1), (B.20)

the time-reversed quantum Langevin equation can be written as

˙̂a(t) = − i
~

[â, Ĥsys]−
((
−γ

2
d̂(t) +

√
γb̂out(t)

)
[â, d̂†]− [â, d̂]

(
−γ

2
d̂†(t) +

√
γb̂†out(t)

))
. (B.21)
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Equating (B.11) and (B.19), and integrating over ω in the continuum limit,

1√
2π

ˆ ∞
−∞

dω b̂(ω, t) = b̂in(t) +

√
γ

2
d̂(t)

= b̂out(t)−
√
γ

2
d̂(t),

we have (by interpreting the b̂in and b̂out respectively as the inputs and outputs to the system) the

boundary equation

b̂out(t)− b̂in(t) =
√
γd̂(t). (B.22)

B.2 Input–Output Operator Correlations

To extract measurable physics, we must now make some assumptions about the state of the system so

that quantum mechanical expectation values can be extracted. We assume that initially (at t = t0),

the system and bath are independent and non-interacting and that the bath operators satisfy

〈b̂(ω, t0)〉 = 0, (B.23)

〈b̂(ω, t0)b̂(ω′, t0)〉 = 0, (B.24)

〈b̂†(ω, t0)b̂†(ω′, t0)〉 = 0, (B.25)

〈b̂†(ω, t0)b̂(ω′, t0)〉 = nb(ω)δ(ω − ω′), (B.26)

with 〈· · · 〉 indicating ensemble average. If the bath modes are independent and the density operator

of each mode is diagonal in the number basis (random phase assumption), then the latter will be

satisfied. We have immediately from (B.17)

〈b̂in(t)〉 = 0, (B.27)

〈b̂in(t)b̂in(t′)〉 = 0, (B.28)

〈b̂†in(t)b̂†in(t′)〉 = 0. (B.29)

More interestingly, we consider

〈b̂†in(t)b̂in(t′)〉 =
1

2π

ˆ ∞
−∞

dω

ˆ ∞
−∞

dω′ eiω(t−t0)e−iω
′(t′−t0)〈b̂†(ω, t0)b̂(ω′, t0)〉

=

ˆ ∞
−∞

dω eiω(t−t′)nb(ω)

= nb(Ω)δ(t− t′), (B.30)
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where we assume that we are concerned with a small bandwidth δΩ about some large frequency Ω

so that nb(ω) ≈ nb(Ω). Using the commutation relations for b̂(ω) and b̂†(ω), we also have

〈b̂in(t)b̂†in(t′)〉 = (nb(Ω) + 1)δ(t− t′). (B.31)

B.3 Single Mode Cavity Coupled to a Thermal Bath

For the special case of a thermal bath of bosons at equilibrium temperature T , coupled to a single

mode cavity with resonant frequency Ω, we have Ĥsys = ~Ωâ†â and nb = 1/(e~Ω/kBT − 1). The

system interacts with the bath via the annihilation operator â so we immediately have the quantum

Langevin equations

˙̂a = −iΩâ− γ

2
â−√γb̂in(t), (B.32)

˙̂a† = iΩâ† − γ

2
â† −√γb̂in(t). (B.33)

If we define the vector notation Ô = [Ô Ô†]T then Fourier transforming the Langevin equations

shows a relation between the input and internal field of

â(ω) =

√
γ

γ/2− i(ω − Ω)
âin(ω), (B.34)

recovering the expected Lorentzian intensity transmission function of width γ/2. In the frequency

domain, we also have correlation functions of the bath given by

〈b̂†in(ω)b̂in(ω′)〉 =
1

2π

ˆ ∞
−∞

dt

ˆ ∞
−∞

dt eiωteiω
′t′〈b̂†in(t)b̂int

′)〉

= nbδ(ω + ω′) (B.35)

〈b̂in(ω)b̂†in(ω′)〉 = (nb + 1)δ(ω + ω′). (B.36)

Using (B.22) to eliminate the internal field, the transfer function between the input and output field

is

âout(ω) =
i(ω − Ω) + γ/2

i(ω − Ω)− γ/2
âin(ω). (B.37)
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Appendix C

Rotated Photoelastic Tensor

Credit for this section goes to Seán Meenehan. If the coordinate system of the crystal unit cell is not

aligned with the cavity coordinate system, we can apply a rotation transformation to the photoelastic

tensor to align the two. From a practical standpoint, the silicon wafers used in the fabrication process

are (100) wafers, so we are only concerned with in-plane rotation transformations of the form

R(θ) =


cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

 . (C.1)

The rotated photoelastic tensor is given by

p′ijkl(θ) = Riq(θ)Rjr(θ)Rks(θ)Rlt(θ)pqrst, (C.2)

where the unrotated photoelastic tensor is given by (3.44). The elements of p′ in the contracted

index notation of (3.43) are

p′11 = p′22 =
1

4
(p11(3 + cos(4θ)) + (p12 + 2p44)(1− cos(4θ))), (C.3)

p′33 = p11, (C.4)

p′12 = p′21 =
1

4
(p12(3 + cos(4θ)) + (p11 − 2p44)(1− cos(4θ))), (C.5)

p′13 = p′23 = p′31 = p′32 = p12, (C.6)

p′44 = p′55 = p44, (C.7)

p′66 =
1

4
(2p44(1 + cos(4θ)) + (p11 − p12)(1− cos(4θ))), (C.8)

p′16 = p′61 =
1

4
sin(4θ)(2p44 + p12 − p11), (C.9)

p′26 = p′62 =
1

4
sin(4θ)(p11 − p12 − 2p44). (C.10)
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Appendix D

Experimental Setup Details

D.1 Equipment Listing

Key Description Company Model Number
− 1,520–1,570 nm tunable laser New Focus Velocity TLB-6328
− optical fiber Thorlabs SMF-28e
− 2× 2 90/10 fiber optic coupler Thorlabs 10202A

λ-meter wavemeter High Finesse WS6/200
FPC manual fiber polarization controller Thorlabs FPC030

EOM
lithium niobate electro-optic amplitude
modulator

EOSpace AX-0K5-10-PFA-PFAP

VOA variable optical attenuator JDS Uniphase HA9
D1 125 MHz InGaAs photodetector New Focus 1811
− C+L band circulator New Focus CIR10BN32N-P

RF-SG microwave signal generator Agilent E8257D-520
LI lock-in amplifier SRS SR830

SWn 2× 2 fiber switch JDSU SN22+107D0FA
− dual stage optical isolator OEQuest ISO-15-D-03

EDFA erbium-doped fiber amplifier Amonics AEDFA-18
D2 broadband 12 GHz photodetector New Focus 1554-B

RSA real-time spectrum analyzer Tektronix RSA3408B
D3 nanosecond InGaAs photodetector New Focus 1623
PM optical power meter Newport 1936-C

Table D.1: Detailed equipment listing. Full list of equipment used in the experimental setup,
shown in Figure 5.1.
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D.2 JDSU Switches

Figure D.1: JDSU switch controller PCB schematic. The schematic for a two layer PCB
measuring 3.8 in × 2.5 in for controlling a JDSU SN Series 2 × 2 switch (model number
SN22+XXXXXXX) either manually or via a TTL signal. Red indicates the top copper layer, green
indicates the bottom copper layer, light gray indicates through-holes, and black indicates the top
silkscreen layer. The two large holes on the right side are for securing the board to an optical table
with a 1 in hole spacing. A list of components is given by Table D.2.

Qty. Description Manufacturer Part Number
1 JDSU SN-SERIES 2×2 SWITCH JDSU SN22+XXXXXXX
1 IC SWITCH QUAD SPST 16DIP Analog Devices Inc. ADG453BNZ

2
SWITCH TOGGLE DPDT .4VA PC
MNT

E-Switch 100AWDP1T1B4M2RE

1
LED 5MM BLUE CLEAR 470NM
30DEG

Cree Inc. C503B-BCN-CV0Z0461

1 LED 5MM RED DIFFUSED Lumex Inc. SSL-LX5093ID

2
RES 1.0K OHM 1/6W 5% CARBON
FILM

Yageo CFR-12JB-1K0

4
STANDOFF M/F HEX M3 BRASS
10MM

Harwin Inc. R30-3001002

4 NUT HEX METRIC M 3 ZINC B&F Fastener Supply MHNZ 003
1 IC SOCKET 16PIN MS TIN/TIN .300 Mill-Max Mfg Corp 110-44-316-41-001000

2
CONN SOCKET BNC STR 50 OHM
PCB

TE Connectivity 5-1634503-1

Table D.2: JDSU switch controller parts list. Full list of required components for the switch
controller in Figure D.1.
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D.3 Electro-optic Amplitude Modulator

ΦM

Figure D.2: Electro-optic amplitude modulator model. The equivalent optical circuit for an
electro-optic amplitude modulator operated in the linear regime (half-max point), modeled as two
ideal 50/50 beamsplitters with a phase modulator (ΦM) in one of the paths.

For an amplitude modulator biased (Vbias) to operate in the linear regime, modeled as Figure D.2,

with a sinusoidal modulation frequency, ω, a modulation index, β, and an input field amplitude,

αin, the output field amplitude, αout, is given by

αout(t) =
αin(t)

2

(
1 + ei(β sinωt±π/2)

)
, (D.1)

where the sign of ± depends on the measured sign of d|αout|2/dVbias. For β � 1, this can be

approximated as

αout(t) ≈
αin(t)

2
(1± i (1 + iβ sinωt))

=
αin(t)

2

(
(1± i)± iβ

2
eiωt ∓ iβ

2
e−iωt

)
. (D.2)

D.4 Laser Frequency Stabilization

Maintaining a constant laser frequency, ω`, and cavity detuning, ∆, is a crucial part of any ex-

periment involving optical cavities, with the fluctuations in both required to be much smaller than

the optical cavity linewidth, κ. We accomplish this with a two-part locking scheme. The absolute

frequency of the laser is fixed by splitting off a small amount of laser power (∼10%) to be measured

by a wavemeter (WM in Figure 5.1). The measurement is read by a USB attached computer run-

ning a software locking program that outputs a control signal to the laser wavelength piezo via a

National Instruments DAQ (NI PCI-6251 with BNC-2110 breakout box), resulting in stability to

approximately ±5 MHz. To lock the laser wavelength to a particular detuning from the optical

cavity, ∆, we have two established methods, explored below.

D.4.1 Lock-in Method

As detailed in Section 5.2, driving an electro-optic amplitude modulator (EOM in Figure 5.1) with

an amplitude modulated (at ωLI) RF carrier of frequency ∆p, will yield a reflected signal from the
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Figure D.3: Cavity reflection signal. The amplitude (
√
X2 + Y 2) of the reflected, modulated

(at ωLI) probe signal as a function of probe detuning, ∆p, measured by a lock-in amplifier (LI in
Figure 5.1). This is the EIT-like signal in the wide regime, as detailed in Section 5.2. The fit to
(D.3) is shown in black, with the dotted red line indicating the detuning, ∆.

cavity, R(∆p), as measured by the lock-in amplifier, of

R(∆p) =
A

(|∆| −∆p)2 + (κ/2)2
, (D.3)

where A is the proportionality constant. We can fit the signal measured by the lock-in using this

model, allowing |∆| to be determined (the sign can be determined by optical characterization of ωo

and knowledge of the laser wavelength). The lock point of the wavelength control loop can then be

adjusted to achieve the desired detuning. In practice, the uncertainty in the detuning is dominated

by fluctuations of the optical cavity and the resolution of the lock-in measurement. The former

can be reduced by averaging the signal of multiple probe scans before fitting. The latter is set by

the modulation frequency, ωLI ≈ 100 kHz for the measurements in Section 5.4, which for a 1 s

frequency sweep of ∆p between 1 GHz and 8 GHz with an integration time of 1 ms per point (∼100

lock-in cycles), limits the resolution to ∼10 MHz. For higher drive powers at room temperature,

additional noise related to the thermal relaxation time of the nanobeams (on the order of kilohertz

to megahertz) is present in the signal. These effects are mitigated at cryogenic temperatures and a

noticeable improvement in signal quality results.

D.4.2 Network Analyzer Method

The lock-in method above, depending on the signal quality, can be quite slow, requiring ∼10 s

per detuning measurement, and ∼1 minute to lock to a particular detuning (in the worst case).

It also suffers from low-frequency cavity noise polluting the signal, and low signal levels since the

measurement is done on reflection. Using a vector network analyzer (VNA) sensitive to ∆p (as

opposed to ωLI � ∆p) on transmission alleviates many of these issues, and features significantly

faster detuning locking (∼10 s). Figure D.4 depicts a simplified experimental setup implementing

this locking scheme.
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Figure D.4: Simplified experimental setup with VNA. The lock-in amplifier measuring a low-
frequency signal on reflection is replaced by a vector network analyzer (VNA) to measure the cavity
response as a function of probe detuning, ∆p, on transmission. The EDFA is a requirement as the
broadband detector, D2, has significantly lower transimpedance gain compared to D1.

In the derivation for the reflection spectra seen by the lock-in amplifier, we could neglect the more

off-resonant modulator sideband since it is strongly suppressed by the cavity frequency response.

However, on transmission, neither sideband is strongly suppressed. Since only one of the sidebands

passes through the cavity for a given detuning (acquiring a phase and amplitude shift), unlike

the reflection case, their mixing will not produce a simple Lorentzian lineshape as a function of

probe detuning, ∆p. We derive the expected signal shape here. The cavity frequency response on

transmission for a detuned probe, t±(∆p) (given by (2.39) and (2.40)), assuming |∆− ωm| > γ, is

t±(∆p) ≈ 1− κe/2

i(∆∓∆p) + κ/2
≡ t(∆p), (D.4)

where we choose the appropriate sign in the expression for t(∆p) depending on sgn(∆). Using the

model for an electro-optic amplitude modulator from Section D.3, the output field amplitude from

the cavity, αout, is proportional to

αout ∝ (1± i) t(0)± iβ
2
ei∆ptt(−∆p)∓ i

β

2
e−i∆ptt(∆p). (D.5)

The measured signal on D2 in Figure D.4 is thus

|αout|2 ∝ |1± i|2|t(0)|2 +O(β2)

+

(
∓ iβ

2
(1± i)t∗(−∆p)t(0)∓ iβ

2
(1∓ i)t(∆p)t

∗(0)

)
e−i∆pt

+

(
± iβ

2
(1∓ i)t(−∆p)t

∗(0)± iβ

2
(1± i)t∗(∆p)t(0)

)
ei∆pt

= |1± i|2|t(0)|2 + 2|A| cos(∆pt− arg{A}), (D.6)

where

A′(∆p,∆, β) = ∓ iβ
2

(1± i)t∗(−∆p)t(0)∓ iβ

2
(1∓ i)t(∆p)t

∗(0), (D.7)
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Figure D.5: Example VNA signal. Normalized phase (green #) and amplitude (blue #) quadra-
tures as measured by the VNA for ∆ > 0 (so t(∆p) = t+(∆p)). The phase quadrature is fit using
(D.9) and the same set of fit parameters is used to plot the theoretical |A|, showing good correspon-
dence to the measured data. The fitted detuning is given as the dotted red line, and we note that
it does not coincide with either peak.

and the VNA signal for the phase and amplitude quadrature are modeled by arg{A′} and |A′|

respectively.

In practice, we noticed deviation of the measured signal from the derived model, which was

attributed to an imbalance in the beamsplitter arms and a phase difference in the probe sidebands.

To correct for this, we phenomenologically insert two fitting constants, α and θ, so that we have

instead

A′(∆p,∆, β)→ A′(∆p,∆, β, α, θ) = ∓ iβ
2

(α± eiθ)t∗(−∆p)t(0)∓ iβ

2
(α∓ eiθ)t(∆p)t

∗(0). (D.8)

A far detuned scan of ∆p allows A′ to be normalized by A′(∆p,∞, β, α, θ) yielding the normalized

expression

A(∆p,∆, α, θ) =
A′(∆p,∆, β, α, θ)

A′(∆p,∞, β, α, θ)

=
(α± eiθ)t∗(−∆p)t(0) + (α∓ eiθ)t(∆p)t

∗(0)

(α± eiθ) + (α∓ eiθ)
, (D.9)

which crucially no longer depends on β, and arg{A} exactly models the normalized phase signal

from the VNA (without a proportionality constant).

An example of this detuning fitting is given by Figure D.5 where we have fit the measured phase

quadrature using arg{A} (having independently measured κ and κe, and normalized the signal with

a far detuned scan of ∆p) and plotted |A| against the measured amplitude quadrature (without

adjusting any fitting parameters).
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D.5 Continuous Flow Liquid Helium Cryostat

Taper Mount

y-Axis Stepper Positioner
x-, z-Axis Stepper Positioner

Sample Stage

Thermometer Mount

Cold Finger Attachment

x-, y-, z-Axis Piezo Scanner
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Thermal Braid – Cold Finger Connection

Taper Tip/Tilt Adjustment Screw

Figure D.6: Schematic of cryostat stage stack. Schematic of the stage stack mounted on the
ST-500 cryostat cold finger. The cold finger connection and base plate are gold plated copper and
nearly all other components are copper with the exception of the taper mount being aluminum and
the stages being titanium. Credit for the technical drawing goes to Alex Krause and Ryan Camacho.

For this work, we use an ST-500 Microscopy Cryostat from Janis Research Company in conjunc-

tion with a stage stack (schematically shown in Figure D.6) and vacuum can with radiation shield

(Figure D.7), capable of achieving ∼4 K at the cold finger and ∼6 K at the sample stage. However,

mechanical mode thermometry indicates that the sample itself only cools to ∼18 K (at the time of

the main result in Section 5.4), likely due to poor thermalization and blackbody radiation entering

through the viewing port of the vacuum can.

The stepper positioners are made by Attocube (model ANPx101). They are used for sub-

nanometer positioning of the taper in the ŷ direction, and of the sample stage in the x̂ and ẑ

direction, with a ∼5 mm range. All three axes are controlled with an Attocube ANC 150 piezo step

controller. For fine positioning of the fiber taper probe, we use an Attocube ANSxyz100 piezo scan-

ner, capable of nearly continuous fine positioning over ∼20 µm in all three directions at cryogenic

temperatures.

Significant improvement to the final sample temperature (to ∼10 K) was achieved by replacing

the originally aluminum risers with copper ones, attaching copper thermal braids to the sample

mount, adding a copper clip to the sample mount to apply direct pressure to the sample, taping
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Figure D.7: Cryostat pictures. a, An overhead view of the cryostat setup, showing the positioning
of the stage stack from Figure D.6 in relation to the radiation shield and exterior vacuum can. From
this view, the copper thermal braids connecting the sample mount to the cold finger through copper
blocks can be seen. In the image, the sample is secured to the copper stage using copper tape,
but we have since added a copper sample clip for better thermalization. b, The entire cryostat
setup showing the vacuum can sitting on top of the cold finger housing, with helium flow directions
indicated with the white arrows. Above the cryostat, we have a microscope objective to position
the fiber taper for coupling.

both the optical fiber (leading to the dimpled taper) and the stage wires to the outside of the

radiation shield using copper tape (keeping them far from the inside of the vacuum can), reducing

the size of the microscopy hole in the radiation shield, and covering the hole with a 1/8” thick,

1–3/4” diameter IR filter (from ESCO products).

D.6 Dimpled Fiber Taper

The dimpled fiber taper has greatly expedited the fabrication–characterization cycle of device design

by providing an efficient (capable of near unity transmission contrast when coupling to an optical

mode), nearly lossless (<0.05 dB end-to-end loss possible), and flexible (controllable transmission

contrast between near vanishing and near unity through careful positioning via nanopositioners)

method of coupling to an optical microcavity. An additional, significant advantage is that the

scheme imposes no additional complications on the fabrication procedure. A microscope image of a

5G device coupled to the laser drive via a dimpled fiber taper is shown in Figure D.8.

D.7 Instrument Control

We note that much of the instrument control was done via MATLAB and the Instrument Control

Toolbox [151]. The wavemeter feedback software was written by myself in .NET (C#) with libraries

from National Instruments to interface with the General Purpose Interface Bus (GPIB) network.
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Figure D.8: Taper coupling in the cryostat. We see here a dimpled fiber taper (with laser
propagation direction indicated with a black arrow) couple evanescently to a 5G device (indicated
with a white arrow). The taper is positioned using a combination of nanosteppers and nanoscanners
(described in Section D.5). We note from this image that the region of the taper that is touching the
silicon is to the left of the device (discolored region in the dimple) and that the taper is at a slight
angle to compared to the nanobeams. This is intentional. The asymmetric touch minimizes the
optical loss to the light leaving the cavity, which conversely maximizes the measured signal-to-noise
ratio. The relative tilt allows for better control of the taper coupling. In practice, if the nanobeam
and taper are too parallel, the taper tends to be drawn into the nanobeam, resulting in significant
degradation to both optical and mechanical quality factors. The way we have touched in the figure
allows part of the taper to be firmly planted to the side of the nanobeam (in the phononic shield
region), while maintaining a sufficient distance from the optical cavity (the taper starts curving
upwards as we move passed the discolored part to the right) so not to perturb the optical field
adversely.
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Appendix E

Silicon Material Properties

T [K] n T [K] n T [K] n
5 − 100 3.45579 210 3.46876
10 − 110 3.45661 220 3.47025
15 − 120 3.45754 230 3.47178
20 − 130 3.45858 240 3.47338
30 3.45289 140 3.45969 250 3.47503
40 3.45302 150 3.46087 260 3.47675
50 3.45322 160 3.46208 270 3.47851
60 3.45353 170 3.46332 280 3.48030
70 3.45396 180 3.46461 290 3.48212
80 3.45449 190 3.46595 300 3.48394
90 3.45510 200 3.46733 310 3.48575

Table E.1: Temperature-dependent refractive index. Normalized data for λ = 1,500 nm from
[119]. Data for T < 30 K could not be found.

T [K] dn
dT

[
K−1

]
T [K] dn

dT

[
K−1

]
T [K] dn

dT

[
K−1

]
5 − 100 7.773× 10−5 210 1.465× 10−4

10 − 110 8.743× 10−5 220 1.513× 10−4

15 − 120 9.650× 10−5 230 1.561× 10−4

20 − 130 1.048× 10−4 240 1.611× 10−4

30 5.853× 10−6 140 1.124× 10−4 250 1.660× 10−4

40 1.611× 10−5 150 1.189× 10−4 260 1.708× 10−4

50 2.640× 10−5 160 1.245× 10−4 270 1.755× 10−4

60 3.670× 10−5 170 1.294× 10−4 280 1.801× 10−4

70 4.698× 10−5 180 1.337× 10−4 290 1.847× 10−4

80 5.725× 10−5 190 1.379× 10−4 300 1.893× 10−4

90 6.756× 10−5 200 1.421× 10−4 310 1.939× 10−4

Table E.2: Temperature-dependent thermo-optic coefficient. Normalized data for λ =
1,500 nm from [119]. Data for T < 30 K could not be found.
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T [K] γ T [K] γ T [K] γ
5 0.3291 100 0.1862 210 0.3714
10 0.2833 110 0.2077 220 0.3831
15 0.2524 120 0.2291 230 0.3943
20 0.2276 130 0.2502 240 0.4047
30 0.1860 140 0.2700 250 0.4137
40 0.1566 150 0.2882 260 0.4232
50 0.1386 160 0.3028 270 0.4334
60 0.1288 170 0.3171 280 0.4428
70 0.1296 180 0.3319 290 0.4491
80 0.1422 190 0.3457 300 0.4556
90 0.1626 200 0.3590 310 0.4643

Table E.3: Temperature-dependent Grüneisen coefficient. Normalized data from [98], calcu-
lated using TOEC and SOEC.

T [K] α
[

10−6

K

]
T [K] α

[
10−6

K

]
T [K] α

[
10−6

K

]
5 0.0000675 100 −0.3390 210 1.565
10 0.000480 110 −0.2122 220 1.715
15 0.001220 120 −0.0570 230 1.855
20 −0.00290 130 0.1186 240 1.986
30 −0.05290 140 0.3060 250 2.108
40 −0.1640 150 0.4975 260 2.223
50 −0.2930 160 0.6890 270 2.331
60 −0.4000 170 0.8775 280 2.432
70 −0.4620 180 1.0610 290 2.526
80 −0.4720 190 1.2376 300 2.618
90 −0.4290 200 1.4060 310 2.702

Table E.4: Temperature-dependent thermal expansivity. Normalized data from [152].

T [K] κ
[

W
m ·K

]
T [K] κ

[
W

m ·K
]

T [K] κ
[

W
m ·K

]
5 420 100 925 210 234
10 1524 110 757 220 217
15 2498 120 638 230 203
20 3188 130 553 240 193
30 3571 140 490 250 184
40 3240 150 436 260 177
50 2696 160 388 270 172
60 2163 170 347 280 167
70 1770 180 311 290 161
80 1446 190 280 300 155
90 1155 200 255 310 148

Table E.5: Temperature-dependent thermal conductivity. Normalized data from [153].



109

T [K] cs [m/s] T [K] cs [m/s] T [K] cs [m/s]
5 − 100 9171.0 210 9151.8
10 − 110 9170.1 220 9149.4
15 − 120 9169.0 230 9146.9
20 − 130 9167.6 240 9144.4
30 − 140 9166.0 250 9142.1
40 − 150 9164.4 260 9139.9
50 − 160 9162.6 270 9137.5
60 − 170 9160.6 280 9135.0
70 − 180 9158.4 290 9132.5
80 9172.8 190 9156.2 300 9129.9
90 9171.9 200 9154.0 310 −

Table E.6: Temperature-dependent speed of sound. Normalized data for [110] longitudinal
waves in silicon from [154].

T [K] CV

[
106 · J
kg ·K

]
T [K] CV

[
106 · J
kg ·K

]
T [K] CV

[
106 · J
kg ·K

]
5 − 100 0.4739 210 1.3461
10 − 110 0.5733 220 1.3945
15 − 120 0.6722 230 1.4387
20 − 130 0.7686 240 1.4790
30 − 140 0.8609 250 1.5159
40 − 150 0.9477 260 1.5497
50 − 160 1.0287 270 1.5806
60 − 170 1.1035 280 1.6090
70 − 180 1.1723 290 1.6356
80 0.2778 190 1.2355 300 1.6611
90 0.3755 200 1.2933 310 1.6866

Table E.7: Heat capacity between 80 K and 300 K. Normalized data from [154].

T [K] CV
[

J
mol ·K

]
T [K] CV

[
J

mol ·K
]

T [K] CV
[

J
mol ·K

]
5 − 100 7.0908 210 −
10 − 110 − 220 −
15 0.0310 120 − 230 −
20 0.1020 130 − 240 −
30 0.5100 140 − 250 −
40 1.3000 150 − 260 −
50 2.3000 160 − 270 −
60 3.4900 170 − 280 −
70 4.6600 180 − 290 −
80 5.6600 190 − 300 −
90 6.4400 200 − 310 −

Table E.8: Atomic heat capacity between 15 K and 100 K. Normalized data from [155].
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Appendix F

COMSOL 3.5a Functions

COMSOL Multiphysics 3.5a is a powerful finite element method simulation tool used to do many

of the optical and mechanical simulations presented above. While the native function set is quite

extensive, numerous helper functions have been written to augment its functionality. The most

important and often used ones are listed here.

F.1 Geometry Indices

COMSOL does not provide a simple function for accessing geometry indices by their coordinates.

When scripting simulations, it is immensely helpful to be able to do so.

1 function bnd = bndindex(g,p0,varargin)
2 % bnd = bndindex(g,p0,n)
3 % bnd = bndindex(g,p0,p1,p2)
4 % Returns the indices of the faces that are coplanar with the specified plane.
5 % Planes are specified by (p0,n) or (p0,p1,p2) where px are points in the plane and n is a

normal vector to the plane. p0 is the reference point.
6 n = [];
7 tol = 1e-10;
8 if(length(varargin)==1)
9 n = varargin{1};

10 else
11 n = cross(varargin{1}-p0,varargin{2}-p0);
12 end
13 if(dot(n,n)==0)
14 error(’Normal not specified correctly.’);
15 end
16 p = cell2mat(geominfo(g,’out’,’xx’,’par’,num2cell(num2cell([1:geominfo(g,’out’,’no’,’Od’,0)]))))

;
17 vx = p(:,:,1)-p0(1);
18 vy = p(:,:,2)-p0(2);
19 vz = p(:,:,3)-p0(3);
20 inplane = find(abs(vx*n(1)+vy*n(2)+vz*n(3))<max(abs(vx*n(1)+vy*n(2)+vz*n(3)))*tol);
21 adj = geominfo(g,’out’,’adj’,’Odp’,[2;0]);
22 bnd = find(sum(adj{1}(:,inplane),2)==sum(adj{1},2))’;

1 function vtx = boxindex(g,dim,dx,dy,dz,varargin)
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2 % vtx = boxindex(g,dim,dx,dy,dz,[options])
3 % pos: 3x1 vector (default [0 0 0]), specifying the anchor point of the bounding box
4 % base: (’center’,’corner’) (default ’center’), specifying where the anchor point is relative to

the bounding box
5 % Returns the indices the geometry elements of dimension dim inside a bounding box of size (dx,

dy,dz), anchored at pos.
6

7 S.pos = [0 0 0];
8 S.base = ’center’;
9 for k=1:2:length(varargin); if (isfield(S,lower(varargin{k}))); S.(lower(varargin{k})) =

varargin{k+1}; end; end;
10 if(strcmp(S.base,’corner’)); S.pos = S.pos+[dx,dy,dz]/2; end;
11

12 p = cell2mat(geominfo(g,’out’,’xx’,’par’,num2cell(num2cell([1:geominfo(g,’out’,’no’,’Od’,0)]))))
;

13 vx = p(:,:,1);
14 vy = p(:,:,2);
15 vz = p(:,:,3);
16 inbox = find(abs(vx-S.pos(1))<=dx/2+1e-12&abs(vy-S.pos(2))<=dy/2+1e-12&abs(vz-S.pos(3))<=dz/2+1e

-12);
17 adj = geominfo(g,’out’,’adj’,’Odp’,[dim;0]);
18 vtx = find(abs(sum(adj{1}(:,inbox),2))==abs(sum(adj{1},2)))’;
19

20 % sometimes comsol inserts the complete geometry as the first element
21 if(dim==3)
22 vtx(vtx==1) = [];
23 vtx = vtx-1;
24 end

1 function vtx = vtxindex(g,bndindex)
2 % vtx = vtxindex(g,bndindex)
3 % Returns the indices of the vertices that outline the boundary element with index bndindex
4

5 adj = geominfo(g,’out’,’adj’,’Odp’,[2;0]);
6 vtx = find(adj{1}(bndindex,:));

1 function bnd = bndexterior(g)
2 % bnd = bndexterior(g)
3 % Returns the indices of the exterior boundaries.
4

5 adj = geominfo(g,’out’,’adj’,’odp’,[3;2]);
6 adj = adj{1};
7 bnds = {};
8 for k=2:size(adj,1)
9 bnds{k-1} = find(adj(k,:)˜=0);

10 end
11 commonbnds = [];
12 for k=1:length(bnds)
13 for m=setdiff(1:length(bnds),k)
14 commonbnds = [ commonbnds intersect(bnds{k},bnds{m}) ];
15 end
16 end
17 commonbnds = unique(commonbnds);
18

19 bnd = 1:flgeomnbs(g);
20 bnd(commonbnds) = [];
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F.2 Perturbation Theory

To compute the optomechanical coupling rate of an optical and mechanical mode, it is necessary

to generate two solution objects (one for each). One-to-one mapping of the solutions on to each

other is often not possible because of the disparate meshing (optical simulations require an air box

while mechanical simulations do not), so helper functions were written to perform this projection.

Often we want to find the coupling rate of many mechanical modes to a single optical mode so

some speedup can be obtained by caching the optical solution. We include the example function

measure g to demonstrate this.

1 function a = oint_bnd_prep(xx,yy,zz,n)
2 global GLOBAL_ofem;
3 global GLOBAL_ebnd GLOBAL_ebnd_c;
4

5 nn = find(abs(xx)<3e-6&abs(yy)<2e-6);
6 a = zeros(size(xx));
7

8 if(˜isempty(nn)); a(nn) = postinterp(GLOBAL_ofem,[’(’ num2str(str2double(n)ˆ2-1) ’*epsilon0_rfw*
normtE_rfwˆ2-’ num2str(1/str2double(n)ˆ2-1) ’/epsilon0_rfw*(abs(nx*Dx_rfw)ˆ2+abs(ny*Dy_rfw)
ˆ2+abs(nz*Dz_rfw)ˆ2))’],[xx(nn);yy(nn);zz(nn)],’edim’,2); end;

9 a(isnan(a)) = 0;
10 GLOBAL_ebnd{GLOBAL_ebnd_c} = a;
11 GLOBAL_ebnd_c = GLOBAL_ebnd_c+1;

1 function a = oint_sub_prep(xx,yy,zz)
2 global GLOBAL_ofem;
3 global GLOBAL_ex GLOBAL_ey GLOBAL_ez GLOBAL_exy GLOBAL_exz GLOBAL_eyz;
4 global GLOBAL_ex_c GLOBAL_ey_c GLOBAL_ez_c GLOBAL_exy_c GLOBAL_exz_c GLOBAL_eyz_c;
5

6 nn = find(abs(xx)<3e-6&abs(yy)<2e-6);
7 a = zeros(size(xx));
8

9 if(˜isempty(nn)); a(nn) = postinterp(GLOBAL_ofem,’epsilon0_rfw*abs(Ex)ˆ2’,[xx(nn);yy(nn);zz(nn)
],’edim’,3); end;

10 a(isnan(a)) = 0;
11 GLOBAL_ex{GLOBAL_ex_c} = a;
12 GLOBAL_ex_c = GLOBAL_ex_c+1;
13

14 if(˜isempty(nn)); a(nn) = postinterp(GLOBAL_ofem,’epsilon0_rfw*abs(Ey)ˆ2’,[xx(nn);yy(nn);zz(nn)
],’edim’,3); end;

15 a(isnan(a)) = 0;
16 GLOBAL_ey{GLOBAL_ey_c} = a;
17 GLOBAL_ey_c = GLOBAL_ey_c+1;
18

19 if(˜isempty(nn)); a(nn) = postinterp(GLOBAL_ofem,’epsilon0_rfw*abs(Ez)ˆ2’,[xx(nn);yy(nn);zz(nn)
],’edim’,3); end;

20 a(isnan(a)) = 0;
21 GLOBAL_ez{GLOBAL_ez_c} = a;
22 GLOBAL_ez_c = GLOBAL_ez_c+1;
23

24 if(˜isempty(nn)); a(nn) = postinterp(GLOBAL_ofem,’2*epsilon0_rfw*real(Ex*conj(Ey))’,[xx(nn);yy(
nn);zz(nn)],’edim’,3); end;

25 a(isnan(a)) = 0;
26 GLOBAL_exy{GLOBAL_exy_c} = a;
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27 GLOBAL_exy_c = GLOBAL_exy_c+1;
28

29 if(˜isempty(nn)); a(nn) = postinterp(GLOBAL_ofem,’2*epsilon0_rfw*real(Ex*conj(Ez))’,[xx(nn);yy(
nn);zz(nn)],’edim’,3); end;

30 a(isnan(a)) = 0;
31 GLOBAL_exz{GLOBAL_exz_c} = a;
32 GLOBAL_exz_c = GLOBAL_exz_c+1;
33

34 if(˜isempty(nn)); a(nn) = postinterp(GLOBAL_ofem,’2*epsilon0_rfw*real(Ey*conj(Ez))’,[xx(nn);yy(
nn);zz(nn)],’edim’,3); end;

35 a(isnan(a)) = 0;
36 GLOBAL_eyz{GLOBAL_eyz_c} = a;
37 GLOBAL_eyz_c = GLOBAL_eyz_c+1;

1 function a = oint_run(˜,˜,˜,id)
2 cid = [id ’_c’];
3 eval(sprintf(’global %s;’,id));
4 eval(sprintf(’global %s;’,cid));
5 a = eval(sprintf(’%s{%s};’,id,cid));
6 eval(sprintf(’%s = %s+1;’,cid,cid));

1 function [ g S ] = measure_g(ofem,mfem,ind)
2 % [ g S ] = measure_g(ofem,mfem,ind)
3 % Computes the optomechanical coupling rate between an RF Module/Electromagnetic Waves solution

object and a Strutural Mechanics Module/Solid, Stress-Strain solution object.
4 % It is assumed there is only one optical mode in ofem, while the mechanical modes in mfem can

be chosen with the vector variable ind.
5 % Returns the computed optomechanical coupling rate g, and an object S containing a breakdown of

the individual contributions in the first order perturbation theory for moving boundaries
and photoelastic effect.

6

7 % constants
8 p11 = -0.101;
9 p12 = 0.0094;

10 p44 = -0.051;
11 c = 299792458;
12 hbar = 1.05457148e-34;
13

14 % globals
15 global GLOBAL_ofem;
16 global GLOBAL_ebnd GLOBAL_ebnd_c;
17 global GLOBAL_ex GLOBAL_ey GLOBAL_ez GLOBAL_exy GLOBAL_exz GLOBAL_eyz;
18 global GLOBAL_ex_c GLOBAL_ey_c GLOBAL_ez_c GLOBAL_exy_c GLOBAL_exz_c GLOBAL_eyz_c;
19 GLOBAL_ofem = ofem;
20

21 % fem constants
22 rho = sscanf(mfem.lib.mat{sscanf(mfem.appl{1}.equ.rho,’mat%i’)}.variables.rho,’%f[kg/mˆ3]’)

*10ˆ15;
23 n = ofem.appl{1}.equ.n{end};
24

25 % prepare ofem integrals
26 GLOBAL_ebnd = {};
27 [GLOBAL_ex GLOBAL_ey GLOBAL_ez GLOBAL_exy GLOBAL_exz GLOBAL_eyz] = deal({},{},{},{},{},{});
28 GLOBAL_ebnd_c = 1;
29 [GLOBAL_ex_c GLOBAL_ey_c GLOBAL_ez_c GLOBAL_exy_c GLOBAL_exz_c GLOBAL_eyz_c] = deal(1,1,1,1,1,1)

;
30 display(’prepping bnd integral...’);
31 postint(mfem,[’oint_bnd_prep(x,y,z,’’’ num2str(n) ’’’)’],’edim’,2);
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32 display(’prepping sub integral...’);
33 postint(mfem,’oint_sub_prep(x,y,z)’,’edim’,3);
34

35 % running integrals
36 Ibnd = [];
37 Ip11 = [];
38 Ip12 = [];
39 Ip44 = [];
40 for N = ind;
41 display([’processing solution #’ num2str(N) ’...’]);
42 GLOBAL_ebnd_c = 1;
43 [GLOBAL_ex_c GLOBAL_ey_c GLOBAL_ez_c GLOBAL_exy_c GLOBAL_exz_c GLOBAL_eyz_c] = deal

(1,1,1,1,1,1);
44 Ibnd(end+1) = postint(mfem,’(u*nx+v*ny+w*nz)*oint_run(x,y,z,’’GLOBAL_ebnd’’)’,’edim’,2,’

solnum’,N);
45 Ip11(end+1) = postint(mfem,’ex_smsld*oint_run(x,y,z,’’GLOBAL_ex’’)+ey_smsld*oint_run(x,y,z,’

’GLOBAL_ey’’)+ez_smsld*oint_run(x,y,z,’’GLOBAL_ez’’)’,’edim’,3,’solnum’,N);
46 Ip44(end+1) = postint(mfem,’exy_smsld*oint_run(x,y,z,’’GLOBAL_exy’’)+exz_smsld*oint_run(x,y,

z,’’GLOBAL_exz’’)+eyz_smsld*oint_run(x,y,z,’’GLOBAL_eyz’’)’,’edim’,3,’solnum’,N);
47 end
48 for N = ind;
49 display([’processing solution #’ num2str(N) ’...’]);
50 [GLOBAL_ex_c GLOBAL_ey_c GLOBAL_ez_c GLOBAL_exy_c GLOBAL_exz_c GLOBAL_eyz_c] = deal

(1,1,1,1,1,1);
51 Ip12(end+1) = postint(mfem,’(ey_smsld+ez_smsld)*oint_run(x,y,z,’’GLOBAL_ex’’)+(ex_smsld+

ez_smsld)*oint_run(x,y,z,’’GLOBAL_ey’’)+(ex_smsld+ey_smsld)*oint_run(x,y,z,’’GLOBAL_ez’’
)’,’edim’,3,’solnum’,N);

52 end
53 Iesq = postint(ofem,’normE_rfwˆ2*epsilon_rfw’);
54

55 % measure omega_m
56 display(’finding omega_m...’);
57 omega_m = mfem.sol.lambda(ind)*1i;
58

59 % measure d_max
60 display(’finding max displacement...’)
61 d_max = [];
62 for N = ind
63 d_max(end+1) = postmax(mfem,’abs(disp_smsld)’,’solnum’,N,’edim’,2);
64 end
65

66 % measure m_eff (assuming x, y, and z symmetry planes are present and the simulation volume is
1/8th of the true volume)

67 display(’finding m_eff...’);
68 dsq_int = postint(mfem,’abs(disp_smsld)ˆ2’,’solnum’,ind);
69 m_eff = 8*rho*dsq_int./d_max.ˆ2; % mass in pg
70

71 % measure f_o
72 f_o = abs(imag(ofem.sol.lambda))/2/pi;
73

74 % compute x_zpf
75 x_zpf = sqrt(hbar./(2.*m_eff.*1e-12.*1e-3.*omega_m));
76

77 % compute g
78 g_bnd = -x_zpf.*f_o.*(Ibnd./Iesq./d_max./2);
79 g_str = -x_zpf.*f_o.*(-nˆ4.*(p11*Ip11+p12*Ip12+p44*Ip44)./Iesq./d_max./2);
80 g = g_bnd + g_str;
81
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82 % store variables
83 S.g_bnd = g_bnd;
84 S.g_str = g_str;
85 S.g = g;
86 S.x_zpf = x_zpf;
87 S.f_o = f_o;
88 S.f_m = omega_m/2/pi;
89 S.m_eff = m_eff;
90 S.Ip11 = Ip11;
91 S.Ip12 = Ip12;
92 S.Ip44 = Ip44;

F.3 Miscellaneous

1 function fem = extractsolution(fem,n)
2 % fem = extractsolution(fem,n)
3 % To save disk space and loading efficiency, we extract the solution we care about (indexed by n

) into a new fem solution structure.
4

5 fem.sol = asseminit(fem,’init’,fem.sol,’solnum’,n,’blocksize’,’auto’)
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Appendix G

Publications

A. H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, and O. Painter, “Observation

of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett. 108, 033602– (2012).

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer,

and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature

478, 89–92 (2011).

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill,

D. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optome-

chanics,” Nature 472, 69–73 (2011).

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,”

Nature 462, 78–82 (2009).

M. Eichenfield, J. Chan, A. H. Safavi-Naeini, K. J. Vahala, and O. Painter, “Modeling dispersive

coupling and losses of localized optical and mechanical modes in optomechanical crystals,” Opt.

Express 17, 20078–20098 (2009).

R. M. Camacho, J. Chan, M. Eichenfield, and O. Painter, “Characterization of radiation pressure

and thermal effects in a nanoscale optomechanical cavity,” Opt. Express 17, 15726–15735 (2009).

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-

scale photonic-crystal optomechanical cavity,” Nature 459, 550–555 (2009).

J. Chan, M. Eichenfield, R. Camacho, and O. Painter, “Optical and mechanical design of a “zipper”

photonic crystal optomechanical cavity,” Opt. Express 17, 3802–3817 (2009).
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[118] S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg,

“Optomechanically induced transparency,” Science 330, 1520–1523 (2010).

[119] B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature-dependent refractive index of

silicon and germanium,” in Proc. SPIE 6273, 62732J (2006).



126

[120] A. H. Safavi-Naeini, J. Chan, J. T. Hill, S. Gröblacher, H. Miao, F. Khalili, Y. Chen, M. As-
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